REPORT DOCUMENTATION PAGE Form Approved OMB NO. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggesstions for reducing this burden, to Washington
Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA, 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any oenalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)
14-12-2015 Final Report 15-Sep-2011 - 14-Sep-2014
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Final Report: Design-for-Hardware-Trust Techniques, Detection | W911NF-11-1-0480

Strategies and Metrics for Hardware Trojans 5b. GRANT NUMBER

5¢c. PROGRAM ELEMENT NUMBER

611102
6. AUTHORS 5d. PROJECT NUMBER
Mark Tehranipoor
Se. TASK NUMBER
5f. WORK UNIT NUMBER
7. PERFORMING ORGANIZATION NAMES AND ADDRESSES 8. PERFORMING ORGANIZATION REPORT
University of Connecticut - Storrs NUMBER
Sponsored Program Services
438 Whitney Road Ext., Unit 1133
Storrs, CT 06269 -1133
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS 10. SPONSOR/MONITOR'S ACRONYM(S)
(ES) ARO
U.S. Army Research Office 11. SPONSOR/MONITOR'S REPORT
P.O. Box 12211 NUMBER(S)
Research Triangle Park, NC 27709-2211 57958-CS.10

12. DISTRIBUTION AVAILIBILITY STATEMENT

Approved for Public Release; Distribution Unlimited

13. SUPPLEMENTARY NOTES
The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department
of the Army position, policy or decision, unless so designated by other documentation.

14. ABSTRACT

The ARO grant provided support for a full time PhD student in Kan Xiao. Kan is graduating in Dec. 2015 and will
join Intel in Jan. 2016. Through the course of this project we developed novel hardware Trojan detection techniques
based on clock sweeping. The technique takes advantage of the change in circuit delay because of inserted Trojan.
The change is of course minimal, hence we developed an effective classification algorithms to detect minor changes
due to Trojan and compared them with those changes made by process variations. This technique was implemented

mam o Ve n aaraii e e OV I h L. TV A 6 i A Acinanbaandn A 2hd AL lniieh T n iaaaaa A i ni e mmmdlla il L

15. SUBJECT TERMS
Design for trust, hardware Trojan, obfuscation

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF [15. NUMBER [19a. NAME OF RESPONSIBLE PERSON

a. REPORT [b. ABSTRACT [c. THIS PAGE |ABSTRACT OF PAGES  |Mohammad Tehranipoor

uu uUu UU uu 19b. TELEPHONE NUMBER
860-486-3471

Standard Form 298 (Rev 8/98)
Prescribed by ANSI Std. Z39.18



Report Title
Final Report: Design-for-Hardware-Trust Techniques, Detection Strategies and Metrics for Hardware Trojans

ABSTRACT

The ARO grant provided support for a full time PhD student in Kan Xiao. Kan is graduating in Dec. 2015 and will join Intel in Jan. 2016.
Through the course of this project we developed novel hardware Trojan detection techniques based on clock sweeping. The technique takes
advantage of the change in circuit delay because of inserted Trojan. The change is of course minimal, hence we developed an effective
classification algorithms to detect minor changes due to Trojan and compared them with those changes made by process variations. This
technique was implemented on a large number of Xilinx FPGAs and demonstrated its efficiency. The second major contribution is
development of a novel concept called built-in self-authentication (BISA). BISA fills in the circuit layouts unused spaces with BISA cells
which are functional cells. Using a novel algorithm, the BISA cells are added such that the added structure can be easily tested in less than a
micro-second. Any changes to the original circuit and/or BISA circuitries can be easily detected. In the 3rd year of the project, we extended
this work to combine BISA with split manufacturing. Hence, BISA not only helps with prevention of hardware Trojans in the circuit layout,
but also is able to provide an obfuscation capability. The paper was presented in HOST 2014 and received best paper candidate honor.

Enter List of papers submitted or published that acknowledge ARO support from the start of
the project to the date of this printing. List the papers, including journal references, in the
following categories:

(a) Papers published in peer-reviewed journals (N/A for none)

Received Paper

TOTAL:

Number of Papers published in peer-reviewed journals:

(b) Papers published in non-peer-reviewed journals (N/A for none)

Received Paper

TOTAL:

Number of Papers published in non peer-reviewed journals:

(c) Presentations

The PI has presented the new concepts developed through the course of this project at many universities, government agencies, and
industry.



Number of Presentations: 10.00

Non Peer-Reviewed Conference Proceeding publications (other than abstracts):

Received Paper

08/06/2013 2.00 A. Ferraiuolo, X. Zhang, and M. Tehranipoor. Experimental Analysis of a Ring Oscillator Network for
Hardware Trojan Detection in a 90nm ASIC,
International Conference on -Aided Design (ICCAD). 06-NOV-12, . :,

08/06/2013 3.00 X. Zhang, K. Xiao, and M. Tehranipoor. Path-Delay Fingerprinting for Identification of Recovered ICs,
Int. Symposium on Defect and Fault Tolerance in VLS| Systems (DFTS). 04-OCT-12, . :,

TOTAL: 2

Number of Non Peer-Reviewed Conference Proceeding publications (other than abstracts):

Peer-Reviewed Conference Proceeding publications (other than abstracts):

Received Paper

08/06/2012 6.00 Nicholas Tuzzio, Kan Xiao, Xuehui Zhang, and Mohammad Tehranipoor. A Zero-Overhead IC
Identification Technique using Clock Sweeping and Path Delay Analysis,
IEEE GLS-VLSI. 04-MAY-12, . :,

12/14/201€ 9.00 K. Xiao, D. Forte, M. Tehranipoor. Efficient and Secure Split Manufacturing via Obfuscated Built-In Self-
Authentication,
IEEE Hardware Oriented Security and Trust. 04-MAY-15, . :,

TOTAL: 2



Number of Peer-Reviewed Conference Proceeding publications (other than abstracts):

(d) Manuscripts

Received Paper

08/06/20123 5.00 K. Xiao, X. Zhang, and M. Tehranipoor. A Clock Sweeping Technique for Detecting Hardware Trojans
Impacting Circuits Delay,

IEEE Design and Test of Computers (08 2012)

08/06/20123 4.00 X. Zhang, A. Ferraiuolo, and M. Tehranipoor, 2.. Detection of Hardware Trojans using a Combined Ring
Oscillator Network and Off-chip Transient-Power Analysis,
ACM Journal on Emerging Technologies in Computing Systems (11 2011)

12/14/2015 8.00 K. Xiao, D. Forte, M. Tehranipoor. A Novel Built-In Self-Authentication Technique to Prevent Inserting
Hardware Trojans,

()

TOTAL: 3

Number of Manuscripts:

Books

Received Book
TOTAL:
Received Book Chapter

TOTAL:



Patents Submitted
Methods and Systems for Preventing Hardware Trojan Insertion, M. Tehranipoor and K. Xiao, US20140283147 Al

{Avplication)

rppricatoit)

Patents Awarded

Awards
The following paper was nominated for best paper award at the 2015 HOST Symposium:

K. Xiao, D. Forte, and M. Tehranipoor, "Efficient and Secure Split Manufacturing via Obfuscated Built-In Self-
Authentication,"I[EEE Hardware-Oriented Security and Trust (HOST), 2015.

Graduate Students

NAME
Kan Xiao
FTE Equivalent:

Total Number:

PERCENT SUPPORTED Discipline
1.00
1.00

1

Names of Post Doctorates

NAME

FTE Equivalent:
Total Number:

PERCENT SUPPORTED

Names of Faculty Supported

NAME
Mark Tehranipoor
FTE Equivalent:

Total Number:

PERCENT SUPPORTED National Academy Member
0.10 No
0.10

1

Names of Under Graduate students supported

NAME

Shane Kelly
Andrew Ferraiuolo
FTE Equivalent:

Total Number:

PERCENT SUPPORTED Discipline

0.10 ECE Department, Undergraduate student
0.10 ECE Department, Undergraduate student

0.20
2




Student Metrics
This section only applies to graduating undergraduates supported by this agreement in this reporting period

The number of undergraduates funded by this agreement who graduated during this period: ...... 2.00
The number of undergraduates funded by this agreement who graduated during this period with a degree in
science, mathematics, engineering, or technology fields:----.- 2.00

The number of undergraduates funded by your agreement who graduated during this period and will continue
to pursue a graduate or Ph.D. degree in science, mathematics, engineering, or technology fields:-.--.- 2.00

Number of graduating undergraduates funded by a DoD funded Center of Excellence grant for
Education, Research and Engineering:...... 0.00

The number of undergraduates funded by your agreement who graduated during this period and intend to work
for the Department of Defense ...... 0.00

The number of undergraduates funded by your agreement who graduated during this period and will receive
scholarships or fellowships for further studies in science, mathematics, engineering or technology fields: ...... 0.00

Names of Personnel receiving masters degrees

NAME
Total Number:

Names of personnel receiving PHDs
NAME
Kan Xiao, PhD
Total Number: 1

Names of other research staff

NAME PERCENT SUPPORTED

FTE Equivalent:
Total Number:

Sub Contractors (DD882)

Inventions (DD882)

Scientific Progress

In this project we developed innovative concepts that will impact the way integrated circuits are designed and fabricated by
untrusted foundries.

The one concept that has received significant amount of attention is "Built-In Self-Authentication (BISA)". We developed a tool
from this technique, and have filed a patent. This technology will be part of a newly established startup by Mark Tehranipoor.

A paper based on this technology has been nominated for best paper award. The paper was published in HOST 2015. The
winner will be announced in 2016.

A student has been graduate with a PhD degree from the support of this project and will join Intel in Jan 2016.



Technology Transfer

The following technology will be part of a startup company to be established soon by Mark Tehranipoor:

Methods and Systems for Preventing Hardware Trojan Insertion, M. Tehranipoor and K. Xiao, US20140283147 A1 (Application)



Final Project Report

Proposal Number: 57958CS

Mark Tehranipoor

Summary: The ARO grant provided support for a full time PhD student in Kan Xiao. Kan is
graduating in Dec. 2015 and will join Intel in Jan. 2016. Through the course of this project we
developed novel hardware Trojan detection techniques based on clock sweeping. The technique
takes advantage of the change in circuit delay because of inserted Trojan. The change is of
course minimal, hence we developed an effective classification algorithms to detect minor
changes due to Trojan and compared them with those changes made by process variations. This
technique was implemented on a large number of Xilinx FPGAs and demonstrated its efficiency.
The second major contribution is development of a novel concept called built-in self-
authentication (BISA). BISA fills in the circuit layouts unused spaces with BISA cells which are
functional cells. Using a novel algorithm, the BISA cells are added such that the added structure
can be easily tested in less than a micro-second. Any changes to the original circuit and/or BISA
circuitries can be easily detected. In the 3" year of the project, we extended this work to
combine BISA with split manufacturing. Hence, BISA not only helps with prevention of hardware
Trojans in the circuit layout, but also is able to provide an obfuscation capability. The paper was
presented in HOST 2014 and received best paper candidate honor.

2011-2015



Contents

O (o1 oo (¥ Tot i o KO T T UV P ORI PPROPRTTOPI 4
2. A Clock Sweeping Technique for Detecting Hardware Trojans Impacting Circuits Delay ....... 5
2.1 2o €= o]0 [ o U PPUUURRN 6
2.1.1 Trojan Impact on Path Delay .........ueeeiiiiiiiicceeeeee et 6
2.1.2 (0 FoTol [T o 1] o = U PUPUPURN 7

2.2 Trojan Detection MethodOlOgY .......cooueeiiiiiiiiiiie e e e e e e anaens 8
2.2.1 Signature Generation ProCEAUIE.........cccuiiiiiiiee ettt e e cirrrrre e e e e e e e e 8
2.2.2 Node Coverage ANalYSis ......ccccuuiiiiieiie et e e e e e e e e rraaeeeeeeas 10
2.2.3 Statistical Data ANalYSiS.....uuuiiiiii e e e e e a e e e e e 11

2.3 RESUIES @Nd ANGIYSIS ceeiieiieeeiiiiieee e e e e e e e e e e e e breraaaeeeaaaaeeeenns 11
2.3.1 SIMUIALION RESUILS ...ttt s sbee e 11
2.3.2 Trojan Size and Location ANalySiS......uuiiiiiiiiiiiiiiiiiiieeee et e e e e e e 14
233 Clock Sweeping Step Siz€ ANAlYSIS ...ccccuiiiiiiiiee e e e e e 14
2.3.4 FPGA IMpPlementation ......ccoccciiiiiieeece ettt e e e e e e e et aaeeeeeeas 14

3. Built-In Self-Authentication to Prevent Hardware Trojan Insertion By Untrusted Foundry .15

3.1 BISA Structure and INSErtion FIOW.........eciiiiiiiiiie ittt 15
3.2 BISA DESIZN FIOW ceeiiiiiieiieeeeee ettt e e et e e e e e e e e e e e aabbaaaeeeeaaaeesesnnsnnrnnes 17
3.2.1 Unused Space 1dentification...........ooocciiiiiiiiiie e e 19
3.2.2 BISA Cell PlaC@MEBNT....iiiiiiieiiie ettt ettt ettt ettt e s bt e st e e s b e e sba e e sbeeesaneas 20
3.2.3 BISA Cell ROULING coeeeeeeiiitee ettt e e e ettt e e e e e e e e e e e e ettt aaaeeeeaaaeesesnnnnrnnns 20
3.2.4 Place & ROULE AlGOITRMS ..ovviiiiiei e e e e e e e e 22
3.2.5 BISA Design in System-0n-Chips (SOCS) ....uuiiiieieieiiiciiiiiiiieee e e e e e eccciirrree e e e e e e e e e e eeannnnees 24

33 Feasibility and Reliability Of BISA.........coo ottt e e e e e e e e e 25
3.31 10 O PR PRUPTPRT 25
3.3.2 Filler Cell and Decoupling Capacitor Cell........coovveeeieieiiciciiiieeee e, 25
333 Potential AtEaCKS .....eeiieiiieiiie et 26
3.34 R L= o IO OSSPSR 28

3.4 RESUIES @Nd ANGIYSIS ceieieiieeeiiiieeee e e e e e e e e e e e e ebrrbraaeeeaaaaeeeenns 28
3.4.1 BISA IMPlemMENTatioN....cccciiieeeee e e e e a e e 28
3.4.2 11T Y=Y o] o] o =Tl s WA UUUU P 30

3.4.3 Test COVErage ANaAlYSiS ..ccciiii ittt e e e e e e e e e et rr e e e e e e e e e e e e esnnsennes 30



3.4.4 Dynamic BISA vs. STAtiC BISA ... 32

3.4.5 ComPAction RAtiO ..iiiiuiieiiicciiiice e 32
3.4.6 TIMING OVEINEAM ...uvviiieeiiie ettt e e e e e e e e et rr e e e e e e e e e e e eeennseaees 33

4  Efficient and Secure Split Manufacturing via Obfuscated Built-In Self-Authentication ........ 34
4.1 Low-Layer Split vs. High-Layer SPlit........cccociiiiiiieee e 35
41.1 COST ISSUBS .ttt e e e e 35
4.1.2 Security Issues: Obfuscation and TampPering ........cccccviiieeeeee e 36

4.2 Split Manufacturing With OBISA .........ouiiiiie et e e brraaeeee e 36
4.2.1 oY Yo XY =To IV-Y o] o] o - Tol o OSSR UUU 36
4.2.2 OBISA SEIUCTUNE e 37
4.2.3 SECUNIEY ANAIYSIS.ciiiiiiiiiitieee e e e e e e e e e e e st rbaaareeeaaaeeeenns 38

4.3 IMPlEMENTATION STIATEEY oceviiiiiiiieee et e e e e e e e e e e e a e e e e eeaeeeeeans 39
4.3.1 IMPlEMENTAtION FIOW ..cccciieeeeec e e e e et aa e e e e 39
4.3.2 OBISA Cell INSertion STrategY ..ccceeeeiieeciiiiiieee ettt e e e r e e e e e e e e 40
4.3.3 OBISA Cell CoNNection STrategY ......ccccvviiiiiiiiee ettt e e e e e e cirrrr e e e e e e e e e 40

4.4 EXPErimental RESUITS .....ccoi ettt e e e e e e e e e e e barr e e aeeeaaaeeeeenas 43
44.1 OBISA IMPIeMENtAtiON ...uuiiiiiiiiie ettt e e e e e e e e e brrrreeeeaaaeeeenns 43
4.4.2 Authentication Test Coverage ANalysis .....cccouvvieiireeeeeiiiiiiiiiieeee e 43

5.  Conclusions and ReSEArch PIaNS ........coooiiiiiiiiiiiie ettt s 44
REFEIENCES ..eeeeiieeet ettt et ettt e st e e a bt e e s bt e e sa b e e e sabeeesabeeesabeeesabeeesabeeesarenenane 45

21T o] Lo 4T o] o1V PRSP Error! Bookmark not defined.



1. Introduction

To lower the cost of IC design and fabrication, the supply chain of the semiconductor
industry has been distributed around the world. As the complexity of ICs increases, more and
more highly specialized companies get involved in the IC fabrication process to enhance
efficiency and improve manufacturability, providing attackers with more opportunities to
identify (reverse engineering) circuit functionality and make malicious alterations, known as
Hardware Trojans. Hardware Trojans have become a major concern to security-critical
applications, such as military, transportation and financial systems. Some Trojans can be
inserted into a design if any untrusted tools or IP blocks are used. Other Trojans can be
implanted by modifying the layout of the design during GDSIlI development and fabrication.
Trojans in ICs may cause malfunctions, lower the reliability of the ICs, leak confidential
information to adversaries or even destroy the system under specifically designed conditions
[1][2][10]. Detecting these malicious inclusions and alterations is extremely difficult, due to the
following characteristics of Trojans: First, Trojans are small compared to the designs they have
altered, which attributes of Trojan-inserted ICs are almost the same as those of Trojan-free ICs.
Second, Trojans can be kept dormant during most of their operation, and be activated under
very specific conditions. Third, a Trojan’s behavior is unknown. Thus, it is very challenging to
model Trojan’s behavior and devise a Trojan detection technique that can target all types of
Trojans.

In general, most research in the past several years focused on hardware Trojan detection
which can be divided into two categories: Trojan detection approaches and design-for-trust.
Trojan detection approaches can be further categorized into full Trojan activation and side-
channel analysis [2]. The first approach [3][4][11] tries to activate Trojans by applying test
vectors and comparing the responses with the correct results. Intelligent adversaries will ensure
Trojans are activated under very rare conditions and can go undetected under structural and
functional tests during manufacturing test process. Due to the numerous logical states in a
circuit, it is impractical to enumerate all states of a real design. Additionally, instead of changing
the functionality of the original circuit, Trojans can be designed to transmit information with an
antenna or modify the specification. Full Trojan activation methods may fail to detect these
kinds of Trojans. Side-channel signal analysis has been developed to detect hardware Trojans by
measuring circuit parameters, such as power (transient [5][12] and leakage current [6]) and
delay [7]. A partial activation (i.e., generating signal transitions in a Trojan's component without
fully activating the Trojan) of Trojans is still required for the methods based on transient power
as a side-channel signal. In order to improve the effectiveness of detection methods, several
design-for-trust techniques are proposed to facilitate Trojan detection techniques [7][8] and
make Trojan insertion difficult [9]. However, the original design would be altered after applying
these design-for-trust techniques. Moreover, as the size of circuit increases, it will have more
quiet (low controllability/observability) nets/gates. Because of complexity of processing and
large time/area overhead, such techniques are still difficult to apply to a large design that
contains millions of gates.

Additionally, some techniques have been developed recently to obfuscate original circuit
design and try to hinder reverse engineering by untrusted foundries. Reverse engineering is
another major security threat, because reverse engineering could be used to clone, pirate, and
counterfeit a design, or to develop new attacks, including hardware Trojans. Logic obfuscation
attempts to hide the functionality and the implementation of a design by insertion of built-in
locking mechanisms into the original design. The locking circuits become transparent and the
right function appears only when a valid key is applied [31]. The increased complexity of



identifying the genuine functionality without knowing the right input vectors is able to dwarf the
ability of inserting a targeted Trojan by attackers. Camouflaging is a layout-level obfuscation
technique to create indistinguishable layouts for different gates by adding dummy contacts and
faking connections between the layers within a camouflaged logic gate [32]. However, these
techniques require additional circuit or design efforts in the design phase (RTL or gate-level). The
potential area and performance overheads are the chief concerns to IC designers. Thus, the
existing techniques are still questionable to apply to a large design that contains millions of
gates. In addition, these techniques need to insert additional gates (logic obfuscation) or modify
the original standard cells (camouflaging), which could degrade the chip performance
significantly and affect their acceptability in high-end circuits. Therefore, a low-cost and
effective technique is necessary today to prevent reverse engineering by untrusted foundry.

In order to overcome the drawbacks described above, we proposed one effective hardware
Trojan detection method, one hardware Trojan prevention method, and one design obfuscation
method with negligible overhead in this report.

The rest of this report is organized as follows.

1. Section 2 will present our new method of detecting hardware Trojans impacting circuits

delay using a clock sweeping technique.

2. Section 3 will first propose a novel technique to prevent hardware Trojan insertion and
algorithms for placement and routing of added cells are presented in this report.

3. Section 4 will present a new technique to prevent reverse engineering of the circuit
functionality and further prevent hardware Trojan insertion with split manufacturing
process.

4. Section 5 will conclude the report and provide a brief future research direction.

2. A Clock Sweeping Technique for Detecting Hardware Trojans
Impacting Circuits Delay

Side-channel signal analysis has been developed to detect hardware Trojans by measuring
circuit parameters, such as power (transient and leakage current) and delay. The authors in [13]
[7] measure path delays to detect changes caused by Trojans. Although effective, only critical
paths in [13] are measured, limiting detections of Trojans inserted on non-critical paths. The
authors in [7] use one additional shadow register and one comparator to measure each path
delay in the circuit.

Compared to full Trojan activation and other side-channel signal techniques, a delay-based
technique has a unique benefit because it does not need to activate the Trojan either partially or
fully. Moreover, each path delay is relatively independent, so it is less affected by other paths of
the chip, and a Trojan can potentially contribute more to a path delay change than total circuit
power. Existing delay-based Trojan detection methods face the following challenges: (1) to
ensure the maximum detection coverage of Trojans that can potentially be placed and
distributed on various paths besides critical paths, and (2) the measurement of paths delay at a
low cost. Since there is a huge number of paths in a design, any additional hardware for path
delay measurement will increase the area and silicon cost significantly. Taking into account these
issues, in this work, we propose a “clock sweeping" technique to obtain path delay information
without any additional hardware. Transition and path delay fault (TDF and PDF) patterns are used
to obtain high coverage on the nodes of critical and non-critical paths. Once the data has been
collected by clock sweeping, we generate a series of delay signatures for ICs, and then analyze



whether ICs contain Trojans. Since transitions are easier generated on short paths as
demonstrated in [7], the Trojans on the short paths can be detected more efficiently by power-
based Trojan detection techniques [5] [6]. This is evident by the fact that nodes on short paths
have generally higher controllability and observability [7].

2.1 Background
2.1.1 Trojan Impact on Path Delay

We can expect that intelligent adversaries will try to maintain the original design layout and
insert Trojans into unused spaces of the layout to keep the Trojan hidden. In order to simplify
this problem, we consider the nodes (outputs of gates) in the genuine IC instead of the paths for
the analysis in this section. These nodes might be affected by either a trigger or a payload from a
Trojan [13]. Thus, we consider three types of Trojans depending on how they are activated and
their action to the functional circuit: Trojans with only payloads (TP), Trojans with only triggers
(TT), and Trojans with triggers and payloads (TTP) [13].

TrOJanA/P hyload Trojan

Sensitized Path | C
L1

Sensitized Pat \‘
r— ——— —_—— e e e e e e e =
2 I
. |
b fCor TP
I
|

Genuine Design

Short [, and I, Long /; and I,
W/O Trojan 848ps 1079ps
W/T Trojan 887ps 1277ps
Increased Delay 39ps 198ps

(c)
W/O Trojan Loc. 1 Loc. 2 Loc. 3 Loc. 4
Path Delay 764.5ps 794.5ps | 837.7ps | 890.0ps | 953.8ps
Increased Delay Ops 30ps 73.2ps | 125.5ps | 189.3ps
(d)
Figure 1: (a) An example of TP, (b) an example of TT, (c) a path’s delay without and with TP with
short and long /; and /,, and (d) a path delay without and with TT at four different locations.

For any Trojan trying to change the function of design, a payload gate has to be inserted at a
node. An example of a TP is shown in Figure 1(a). The sensitized path in the genuine design (the
bold line) passes through node B. The additional delay consists of the propagation delay of the
payload and the delay from the two wires' capacitances (/; and /,). For any internally activated
Trojan, the triggered parts will introduce additional interconnections which will cause
unavoidable increased capacitance on the node. Besides TP and TT, TTP would have the
cumulative effect of TP and TT.

In order to show the effect of TP and TT on paths delay, we performed simulations in 90 nm
technology. We inserted two payload gates (minimum-sized NAND) at two positions. One is
physically very close to the node (short /; and /; as in Figure 1(a)) and the other is remote from
the node (longer I, and 1,). In Figure 1(c), delay of path going through node B is measured, and




the results show that a TP has increased the path delay significantly, more so for Trojans with
long interconnections.

Next, we place a Trojan gate (minimum-sized NAND) at four different locations, with one
input connecting to the node D on the sensitized path. The first location is very close to node D
(l3is short as in Figure 1(b)), with locations 2, 3, and 4 being successively further away from node
D. The delay of sensitized path is measured with and without Trojans for the different locations.
This data is shown in Figure 1(d).

The extra delay caused by TT is shown in the third row of Figure 1(d). Although the increased
delay is still relatively small at the location 1 (shown as Loc. 1 in Figure 1(d)), the TT effects at
locations 2 through 4 are comparable to the effects of the payload shown in Figure 1(c). Thus, as
long as the standard cells in standard design style ASICs are well planned and tightly packed, the
TT effect could be very obvious. Additionally, if a Trojan is activated and its payload becomes
nontransparent, the required transition cannot be generated at payload gate. This faulty
function indicates Trojan’s existence and makes it easier to detect. Trojans without triggers and
payloads would not be detected using this technique since they most likely use an antenna to
receive triggers or leak information. They can be more effectively detected by power-based
Trojan detection approaches [5] [6] because they tend to use more gates and consume more
power than TP, TT or TTP.

2.1.2 Clock Sweeping

When using the TDF or PDF test vectors for Trojan detection, only Trojans that increase a
path's delay by more than its available slack can be detected. This is unlikely to happen since
adversary will design Trojans hard to be detected by these patterns by avoiding critical paths
and ensuring that the delay induced by Trojan is smaller than slack. We develop a clock
sweeping technique to target shorter paths affected by Trojans without any design or silicon
overhead. Clock sweeping involves applying a pattern at different clock frequencies, from a
lower speed to higher speeds, which is a common practice in industry used for speed binning of
parts. Some paths sensitized by the pattern which are longer than the current clock period start
to fail when the clock speed increases. The obtained start-to-fail clock frequency can indicate
the delays of the paths sensitized by the patterns.

For example, assume that the six paths in Figure 2(a) can be sensitized by test patterns. The
clock period is swept from f, to fs and the sweep step size is At, as shown in Figure 2(b). As an
example, path B-D is able to propagate correct values at frequency f, to f3 (pass), and will
produce wrong logic values at frequency f, (fail). Thus, its start-to-fail clock frequency is f4, which
denotes the length of path B-D is between the frequency f;and f;. When the clock is swept from
low frequencies to high frequencies, paths will fail sequentially, with longer paths failing before
shorter paths.
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Figure 2: (a) An example circuit and (b) Clock sweeping.

Suppose that a Trojan load is added to a path as shown in Figure 2(a); the additional
capacitive load will result in a small extra delay on paths A-E and B-E, which may push the arrow
to the right and even fail path A-E at f, and path B-E at f. In this case, the change of start-to-fail
frequency could be detected by clock sweeping. Finally, the maximum frequency applied to the
circuit depends on the design characteristics, path-delay distribution in the design, and the on-
chip or off-chip frequency generator's limit. Note that in today's designs, most of the paths are
long or critical; this is due to the aggressive pipelining to increase circuit performance [14].

2.2 Trojan Detection Methodology
2.2.1 Signature Generation Procedure
Both the nodes on short and long paths have been taken into considerations in our

proposed procedure which is shown in Figure 3. The following steps are performed to generate
signatures for all ICs.
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Figure 3: Our proposed signature generation procedure using clock sweeping.

Test Pattern Generation: Similar to the TDF model, here we assume that TP or TT affects a
node in the circuit, making the corresponding gate slow to fall or slow to rise. Thus, the TDF
patterns are used in our procedure. One advantage of the TDF model is that the number of
faults is linear relative to the number of nodes; thus, we can use a portion of all paths to
sensitize all nodes in the circuit, and the cost of measuring paths delay could be decreased
significantly. Another advantage of using the TDF pattern set is that it is widely used in industry;
the ATPG processes are mature and many proposed techniques can be used to increase its fault
coverage.

Sweeping Frequencies and Step Size Selection: The range and step size of sweeping
frequencies are two critical parameters involved in clock sweeping, because they determine the
effectiveness of our Trojan detection technique. A smaller step size could be more sensitive to
the small extra delay induced by Trojans. The range determines the range of long paths. Higher
maximum frequency could fail more long paths during clock sweeping so that higher Trojan
node coverage for delay-based Trojan detection can be achieved. The test time and data
volume overhead will increase as a larger range and smaller step are selected. Additionally, the
clock sweeping range and step size are both dependent on the testing equipment.

Nodes Selection: Once the clock sweeping frequencies are determined, the sensitized path
delays larger than the maximum frequency are considered as “long paths". Otherwise, they are
called “short paths". For example, in Figure 2(b), B-C is a short path and others are long paths; f
is the maximum application frequency. The delay of all the long paths can be obtained from
their start-to-fail frequencies. Since the nodes on long paths can be authenticated in clock
sweeping, all the patterns sensitizing these long paths will be kept. Patterns only sensitizing
short paths are still useful in generating transitions for power-based Trojan detection [5] [6].
This step divides the nodes in a circuit into two groups- nodes are authenticated either by the
clock sweeping or by power-based detection techniques. Moreover, removing patterns that



sensitize only short paths could save a significant amount of test time during clock sweeping. In
this work, we focus on the right branch of the procedure as shown in Figure 3.

Clock Sweeping: This process is similar to the conventional TDF test. The only difference is
that we need to apply each pattern that sensitizes at least one long path at different clock
frequencies. The logic values captured by the scan flip-flops under the different clock
frequencies are shifted out.

Signature Generation: By analyzing the pass and fail values, we find the start-to-fail frequency
at each flip-flop for each pattern. As an example, Figure 4(a) presents the start-to-fail frequency
for each pattern/flip-flop combination in ICs. Long-path patterns are able to sensitize different
kinds of paths at different flip-flops: long, short or no path at all. For these flip-flops at which
short or no path are sensitized, they always capture “passing" value during clock sweeping.
These invalid pattern/flip-flop combinations need to be discarded from our signature. For
example, assuming the pattern 2/flip-flop 2 (P2/FF2) is an invalid combination, the column
P2/FF2 has been removed from Figure 4(a). Thus, the final signature length will be shorter, as is
shown in Figure 4(a). Each row of the table is a signature for an IC and each column is an
element of the signature. The multidimensional signature will be processed by multidimensional
scaling described in Section Il1.D.

P1/FF1 | P1/FF2 P2/FF1 | P2/FF3 PP,/FFm
IC1 fe f1a fs fao fio
IC2 f7 f12 fa fa fo
IC3 fs fu fs f19 fio
ICn fs f1a fa fa3 f12
(a)

Clock Period >1CP | >0.9CP | 0.7CP 0.5CP 0.2CP 0oCP
Node Coverage 0% | 48.59% | 61.01% | 78.87% | 95.18% | 100%
(b)

Stage 1 2 3 4 5 6 7
Pathl | 0.5 0.5 | 0.13 | 0.00059 | 0.00040 | 0.00023

Path2 | 0.5 | 0.29 | 0.28 0.063 0.012 0.0024 0.00046
Path3 | 0.5 | 0.25 | 0.11 0.015 | 0.000296 | 0.000199 | 0.000115

(c)
Figure 4: (a) Pattern/flip-flop (Pi/FFj) combinations with start-to-fail frequencies, (b) node
coverage on different clock frequencies, (c) transition probabilities on three quiet paths.

2.2.2 Node Coverage Analysis

The objective of our technique is to recognize load capacitance induced by Trojans and
capture its impact on a path. The coverage analysis in our technique can be divided into two
parts: nodes on long paths and nodes on short paths. Clock sweeping can guarantee that all
sensitized long paths will fail at a particular clock frequency. Hence, the node coverage on long
paths is dependent on the TDF coverage. The TDF is widely used in VLSI testing, so there have
been many approaches proposed to improve the coverage of the TDF in recent years. All these
techniques can be applied in our procedure to achieve maximum coverage. In the meantime, a
Trojan's load capacitance can slow down both rising and falling transitions. For Trojan detection,
one fault, slow-to-rise or slow-to-fall, is sufficient to indicate the existence of Trojans on that
node instead of two faults as in the TDF model. Therefore, node coverage will be the ratio of all



detected nodes by either slow-to-rise or slow-to-fall using TDF long-path patterns to the total
number of nodes in the circuits.

Figure 4(b) shows the estimated node coverages at different clock frequencies in benchmark
s38417 for reference. ATPG patterns which are able to reach 99.4% TDF coverage are used to
sensitize all testable paths. The clock period in Figure 4(b) is given in the form of the percentage
of the longest critical path (CP) in the circuit.

Short paths, whose delay is smaller than the maximum frequency we can apply, will never
fail during clock sweeping. It is very difficult to measure short paths due to the maximum
frequency limitation of the tester and the power limit of the IC.

In general, the quietest nodes which have very few transitions are usually on the long paths
in a circuit [8]. In order to verify this claim, we apply random patterns to primary inputs and scan
chain, and then calculate transition probability for each gate. The gates with low transition
probabilities are selected to be analyzed. We choose three quiet paths and their transition
probabilities at different stages are shown in the Figure 4(c). As the number of stages of the
path increases (1 through 7), the transition probability goes down.

Trojan gates have a higher probability to switch when they connect to nodes on short paths,
which means they tend to consume more power [8]. Power-based Trojan detection [5] [6] can
effectively detect Trojans on short paths, so adversaries could put Trojans on long paths to hide
them. Our clock sweeping technique is able to make up for the deficiency involved with power-
based Trojan detection. Increasing the test coverage in both power-based and delay-based
approaches can improve the possibility to identify infected chips.

2.2.3 Statistical Data Analysis

Trojan detection is extremely difficult due to process and environmental variations,
especially when the Trojan is small and has very short wire connections. In order to detect
Trojans, we will use a statistical analysis method to separate Trojan-free ICs and Trojan-inserted
ICs.

Multidimensional Scaling (MDS) is a method for visualizing dissimilarity in data. The typical
goal of MDS is to create a configuration of points in one, two, or three dimensions, whose
interpoint distances represent the original dissimilarities. In a similar manner, [13] was first to
use PCA/Convex for hardware Trojan detection. The different forms of MDS use different
criteria to quantify dissimilarity, such as metric and nonmetric multidimensional scaling [15].
The MDS we used in our method maps the original high dimensional space to a lower
dimensional space, at the same time attempts to preserve the pairwise distance and finally
isolate the dissimilar chips which may carry Trojans. As described in Section IIl.A, the signature
of a chip is composed of a set of path delays. One element in a signature is considered as a
dimension. Their Euclidean distances in high-dimensional space depend on the effects of both
process variations and Trojans. Since outlying points in high dimensions contain Trojans and
their corresponding points in low dimension are still outliers, we can use outlier points in low
dimensions to predict statistical likelihood of Trojan presence. For our technique, the x-
dimensional signatures for Trojan-free ICs will be mapped to a 3-dimensional space by MDS, and
then a convex hull will be constructed. If the signature of an IC under authentication is located
outside of the convex hull, this IC is considered suspicious and may contain Trojans.

2.3 Results and Analysis

2.3.1 Simulation Results

In order to demonstrate the effectiveness of our proposed technique, the simulations were
performed on an implementation of the ISCAS'89 benchmark s38417 using a 90 nm technology
library. After synthesis, the s38417 benchmark circuit has 1564 flip-flops and 4046 logic gates.



The layout was completed with the Synopsys physical design tool IC Compiler. The Trojan
gates were inserted and routed in unused spaces in the layout by using IC Compiler. The impact
of process variations on threshold voltage (V;), oxide thickness (T,,) and channel length (L) have
been taken into considerations as well. Both the inter-die and intra-die process variations for
each of the three previously mentioned parameters are 5% in our simulations. 300 Monte Carlo
Simulations, including 200 simulations for Trojan-free chips and 100 for Trojan-inserted chips,
were performed at a temperature of 25°C for each Trojan using HSPICE.
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Step Size | 10ps | 20ps | 40ps | 60ps | 80ps | 100ps
Trojan 2 | 100% | 65% | 55% | 38% | 14% | 9%
Trojan 3 | 100% | 100% | 100% | 100% | 2% | 11%
Trojan 4 | 100% | 100% | 100% | 100% | 100% | 100%
Trojan 6 | 100% | 100% | 100% | 100% | 100% | 100%
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(i) Detection rate at different step sizes.
Figure 5: Outlier analysis using MDS for Trojans 1-6 using simulation ((a)-(f)) and Trojans 7-8 on
FPGAs ((g)-(h)), and step sizes analysis (i).

For our delay-based Trojan detection technique, we do not concern ourselves with Trojan's
type or how many gates the Trojan has. Instead, we focus on how many triggers and payloads
the Trojan will bring to the original design. We have inserted a large number of Trojans in this
design among which we selected six Trojans to present results in details. Every Trojan is
composed of a few minimum-sized gates, and these gates are placed in the nearest available
unused space to keep the wire connections as short as possible. This will make the Trojan harder
to detect. These six Trojans were constructed as follows: Trojan 1 has one payload and one
trigger (TTP type). Trojan 2 has the same structure as Trojan 1, but is inserted at a different node.
Trojan 3 has two payloads with very short connections (TP type). Trojan 4 has four triggers and
no payload (TT type). Trojan 5 has three triggers and two payloads (TTP type). Trojan 6 has six
triggers and four payloads (TTP type).

The maximum frequency, functional frequency and step size in our simulations are 1.5GHz,
700MHz and 10ps, respectively. By using the methodology described in Figure 3, 300 signatures
for 200 Trojan-free ICs and 100 Trojan-inserted ICs are generated. After MDS processing
described in Section III.D, the outlying results for Trojans 1 through 6 are shown in Figures 5(a)-
(f). The convex hull is formed using signatures of 200 Trojan-free ICs. These points are placed
much closer to each other than the rest of hollow dots obtained from Trojan-inserted ICs.
According to the distance between outliers and convex hull, two classes of ICs are separated.
While Trojan 1's detection rate is 64% (64 out of 100 Trojan-free ICs are detected), from Trojan 2
to Trojan 6, their detection rates are all 100%. The Trojan 1 is the worst case for Trojan with
payload and trigger because it has one minimum sized NAND gate which is used as a payload
and only one sensitized path passes through this payload. More triggers, payloads and sensitized
paths passing through Trojan nodes make detection from Trojan 2 to 6 easier. There might be
some limitations associated with the MDS algorithm since it treats the signatures from the ICs as
linear. As a part of our future work, we might apply different statistical classification algorithms
(such as Diffusion Map and Support Vector Machine) with the aim of further improving the
detection rate. However, in our analysis (particularly for Trojans 2 to 6), MDS seems to easily
classify all the chips shown in Figures 5(b)-(f). Note that we have randomly inserted Trojans on a
very large number of locations in the circuit and was able to observe similar results.



2.3.2 Trojan Size and Location Analysis

Generally, larger Trojans might have more triggers and payloads, so they bring a larger
impact to the original circuit. From Trojan 1 to Trojan 6, as the size of Trojans increases, these
triggers and payloads affect larger number of nodes in the circuit. In other words, the larger
Trojan size means that more paths, sensitized by the TDF patterns, will be impacted by the
Trojan. Although Trojans' impacts may be masked by process variations, a larger number of
sensitized paths always lead to higher detection possibility. Additionally, larger size Trojan most
likely results in longer interconnection for triggers and payloads due to the limited unused space
nearby for Trojan insertion. The extra delay induced by the larger Trojan will then increase. This
can be seen in Figure 5; as we move from (a) to (f), the points also move away from the convex
hull, i.e., the distance between Trojan-inserted ICs and Trojan-free ICs becomes larger. Thus, as
the size of the Trojan increases, it becomes easier to separate Trojan-inserted and Trojan-free
ICs by using the proposed technique.

In addition to Trojan size, the Trojan's location also has a significant influence on the results.
Scan flip-flops can be considered pseudo-primary inputs and outputs. Sensitized paths spread
out like a cone from scan flip-flops' outputs and converge at scan flip-flop's inputs. The nodes
closer to a scan flip-flop will have more of a chance to influence these sensitized paths. Thus,
these Trojans are easier to be detected. In our simulations, although Trojans 1 and 2 have same
size, Trojan 2 is closer to scan flip-flops and Trojan 1 is farther away. In Figure 5, hollow dots in
(b) are farther from convex hull than that in (a), which means Trojan 2 is easier to be separated
than Trojan 1. Thus, we have obtained 100% detection rate for Trojan 2, while Trojan 1 only has
a 64% detection rate.

2.3.3 Clock Sweeping Step Size Analysis

For clock sweeping, path delay gained from simulation needs to be translated to their
nearest achievable clock frequency according to the clock step size. The range and step size
selection are described in Section Ill.A. From the results shown in Figure 5(i), we can clearly see
that the detection rate reduces as the step size increases. The impact of step size becomes less
for larger Trojans, because it has more triggers or payloads on sensitized paths and introduces
larger extra delay.

2.3.4 FPGA Implementation

The benchmark s9234 was implemented on 90nm Xilinx Spartan-3E FPGAs with 145 scan
flip-flops and 571 TDF patterns. Considering the limitations of the DCM, 23 different clock
frequencies, sweeping from 5ns (maximum clock frequency) to 9.4ns (functional clock frequency)
with a step size (At) of 200ps, are generated by a Digital Clock Management (DCM) in the FPGA.
To reduce measurement noise, each frequency was measured three times. Since the step size,
limited by accuracy of the clock crystal and DCM, is larger than the predicted impact of any
trigger, we only focused on TPs in the FPGA implementation.

In this experiment, two types of Trojan with payload are inserted separately in the layout by
using Xilinx FPGA Editor. 44 separate FPGA boards were used, with 32 being Trojan-free and 12
being Trojan-inserted. We randomly chose 80 patterns from the 571 TDF patterns for analysis to
reduce test and measurement time, so the total number of pattern/flip-flop combinations is
80x145=11600. After removing the invalid pattern/flip-flop combinations which cannot fail any
path in the clock sweeping range as described in Section Ill.A, the remaining number of
pattern/flip-flop combinations is 786. These 786 pieces of delay information are used as the
signature for each chip. Figure 5(g)-(h) shows the scaled signature by using MDS for Trojan
detection. The convex hull is drawn according to the signatures of the 32 Trojan-free FPGAs, and
the 12 hollow dots represent the signatures from FPGAs with Trojans. While all hollow dots are



totally separated from the convex hulls, and the detection rate is 100% for both Trojans, we note
that the first Trojan is easier to separate as the distance between the hollow dots and convex hull
is larger. The reason for this is that the payload gate closer to the scan flip-flops influences 79
sensitized paths, while the other Trojan only affects 9 sensitized paths.

3. Built-In Self-Authentication to Prevent Hardware Trojan

Insertion By Untrusted Foundry

In this section, we present a novel Trojan=insertion prevention technique, called built-in
self-authentication (BISA), which is able to fill all unused spaces in a circuit layout with functional
standard cells instead of non-functional filler cells during layout design. BISA can test
functionality of all functional filler cells automatically with low overhead. Therefore, BISA is able
to prevent hardware Trojan insertion in limited available spaces. Additionally, BISA’s impact on
original design is negligible, because there is no connection between BISA circuit and original
circuit and they never work simultaneously. In the meantime, the added BISA cells can provide
decoupling capacitances to minimize voltage drop when original circuit is working. Moreover,
BISA is immune to different types of attacks. Changing or removing any gate in BISA can be
detected by BISA itself. Design automation tools have been developed which can apply
BISA to designs automatically by designers without any knowledge of Trojans. Finally, BISA
eliminates the opportunity for untrusted GDSII developer and foundry to add any malicious
circuitry; however, they may still be able to try to carry their intention by removing
circuit gates and add their own cells.

3.1 BISA Structure and Insertion Flow

Placement tools are typically conservative, aiming to limit density and spread cells
evenly to assure routability. This often leaves small gaps between cells, and it is
impossible for EDA tools to fill 100\% of the area with regular standard cells in VLSI
designs. In practice, after completing placement and routing, all unused spaces will be
filled with filler cells or decoupling capacitor (decap) cells; these cells do not have any
functionality. For intelligent attackers, the most covert way to insert Trojans in a circuit
layout is by replacing filler cells because removing these non-functional filler cells does
have the smallest impact on electrical parameters. If attackers redesign the original layout
for Trojan insertion, moving gates' locations and altering wire interconnections will result
in significant changes of the electrical parameters, such as power and path delay. These
can be detected much more easily by delay-based [13] and power-based techniques [5]
[6].

The principal idea of BISA is to fill all unused spaces with functional standard cells,
called BISA cells, instead of conventional non-functional filler cells. BISA cells are
connected to each other to construct a combinational circuit that is independent from the
original circuit. This combinational circuit can have an arbitrary function. By testing the
function of the BISA circuit, test engineers are able to check whether these cells have
been altered after fabrication. If the adversary inserts a Trojan by changing, removing or
modifying any cell in a BISA circuit, the designer can easily detect it using structural test.
To cover all BISA cells, we try to construct a combinational BISA circuit without
redundant gates; in other words, all gates in the BISA circuit are testable by test patterns
that target stuck-at faults. For a design with BISA, Trojan cell insertion will become
practically impossible without tampering with the BISA cells. Furthermore, BISA cells



are of the same type of standard cells as in the original circuit, so identifying these cells
will be extremely challenging if not impossible.
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Figure 6: The structure of (a) BISA, (b) a 4-stage LFSR, and (c) a 4-stage MISR.

The BISA structure is intended to detect any abnormal alteration on BISA by
producing a different signature than expected. As to how to test the BISA circuit with low
overhead, our inspiration came from the logic built-in self-testing (BIST) for VLSI
circuits. The BIST was developed to apply random test sequences to determine the
correctness of a circuit by examining a signature obtained from the test responses [16].
Basically, BISA consists of three parts: the BISA circuit under test, the test pattern
generator (TPG), and the output response analyzer (ORA), as shown in Figure 6(a). The
BISA circuit under test is composed of all BISA cells that have been inserted into unused
spaces during layout design. In order to increase its stuck-at fault test coverage, the BISA
circuit is divided into a number of smaller combinational logic blocks, called BISA
blocks shown in Figure 6(a). Each BISA block can be considered as an independent
combinational logic block. The TPG generates test vectors that are shared by all BISA
blocks. The ORA will process the outputs of all BISA blocks and generate a signature. In
this work, we use a LFSR as TPG and MISR as ORA. Examples of 4-stage LFSR and 4-
stage MISR are shown in Figure 6(b) and (c). They are used to generate random vectors
and compress responses to a signature. SFF in the figure represents scan flip flop. Other
types of TPG and ORA can also be applied [16].

There are two operating modes associated with the chip, as shown in Table 1. In
functional mode, the original circuit is working normally, but the BISA is in idle mode by
disabling LFSR and MISR. BISA stays quiet and does not affect the original circuits, but
can fulfill the role of decap cells (see Section 3.3.2). Authentication mode consists of two
phases. During the test phase, the LFSR generates N-bit test patterns at every clock cycle



and the N-bit test patterns are shared by all BISA blocks. At the same time, each BISA
block outputs one bit so that the MISR receives a total of M bits from M blocks (see
Figure 6(a)). The test phase ends until a sufficient number of test patterns have been
applied. The number of test patterns is decided in simulation at the BISA design phase,
according to a target test coverage. At this time, the value in the MISR is the signature
generated from the responses of BISA blocks and it can be shifted out through scan chain.
We refer to this as the shift phase. Comparing the obtained signature on a fabricated chip
with the correct signature from previous simulations, we would then know whether the
BISA structure has been tampered with. Since all the registers in LEFSR/MISR and other
registers in circuit are connected in a chain, in the shift phase, the signature in MISR can
be shifted out while, at the same time, the new seed for LFSR is shifted in if more
patterns need to be applied.

In BISA, two control signals are needed to manage the system and trigger the
authentication stage. An authentication mode selection (AMS) signal from the primary is
required to choose between functional mode and authentication mode (as depicted in
Table 1). Therefore, one extra input pin for this signal is required. In the authentication
mode, the system needs to switch between shift and test phase. The test mode selection
(TMS) signal generated in design-for-test for controlling scan chain can be used here as
well, so no additional pin is added. Note that an external clock is applied in all modes. A
particular clock will be generated by a tester or other external clock generators for every
mode of BISA. Typically, shift clock and authentication clock are much slower than
functional clock ]16]. The authentication clock frequency is related to the number of
gates in a BISA block and the gate types. As the gate number goes up, the depth of the
tree structure circuit increases. After BISA design, the depth of every tree structure
circuit is determined and known. The timing constraint can be obtained using static
timing analysis tool to find the longest path. In the authentication mode, a very slow test
clock can be used to ensure no timing violation occurs in BISA circuit. For example,
suppose a tree-structure BISA circuit has a logic depth of 10 and up to 55 gates. If the
propagation delay of each stage is 500ps, the total delay is 5Sns (200MHz). A test clock
slower than 20MHz could be used for the authentication step. With such slow speed, the
authentication would still finish in few milliseconds.

Table 1: Operation modes in a design with BISA.

) . Authentication mode
Functional
mode Shift phase Test phase
Original circuit Working Idle Idle
BISA circuit Idle Shift seed/signature | Test BISA

3.2 BISA Design Flow

The BISA technique is developed to address insertion of Trojans by untrusted GDSII
developers and foundries. We assume that the design has passed all necessary verifications at
design phase, so it is genuine before being shipped to GDSII developer. Figure 7 shows the
proposed BISA design flow and where it fits within the conventional ASIC design flow. The
white rectangles in the figure are steps taken in a conventional ASIC design flow, and the grey
ones are the additional steps for inserting BISA circuitry. We will describe them in detail in the
following subsections.
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Figure 7: BISA design flow.

i. Preprocessing

First, some information of standard cells in the technology library needs to be known and
stored for later steps. Dimension of each standard cell, such as length and width, is needed for
identifying and analyzing unused spaces. Once the placement direction and location of a
particular cell are given, the coordinates of its four corners can be calculated by the cell's length
and width. Additionally, the number of input pins and the name of a cell are saved for later usage.
After obtaining the necessary information for all standard cells, BISA cells will be selected from
them and marked according to the following criteria: 1) BISA cells must be the minimum-size
cell for every logic, so they are resistant to a resizing attack by the adversary (see Section 3.3.3).
2) The amount of decoupling capacitance the cells can provide and the input count should be
considered as well. The normalized input count represents the number of inputs of a standard cell
if the same cell has the same area of the minimum-size cell (e.g., INVx0 in Table 2). Fewer inputs
help to improve test coverage, which will be explained in Section 3.2.4. 3) The smallest cell in
the library must also be included in order to ensure that no cell can be inserted in any remaining
unused space. Table 2 gives an example generated with Synopsys 90nm library. The columns
labeled area and input show each cell's area and input count. The normalized input count is listed
in the fourth column. Once a cell is selected, it will be marked in the last column of the table. A
cell with fewer inputs and a larger decoupling capacitance has higher priority to be a BISA cell.
Note that cell INVx0, NAND2x0, and NOR2x0 are three smallest cells in this library. Since two
inverters could potentially connect in serial to form a buffer and the buffer is redundant logic,
INVx0 would not be chosen as a BISA cell. On the other hand, the NAND2x0 cell and the
NOR2x0 cell would be selected to ensure BISA circuit contains the smallest cell.

Table 2: Cell information collected at preprocessing step.



Name Area | Input cnt | Normalized Input | BISA
INVx0 1920 I I No
NAND2x0 1920 2 2 Yes
NOR2x0 1920 2 2 Yes
INVxI 2240 I 0.86 No
AND2x1 2560 2 1.5 Yes
NAND3x0 2560 3 2.25 Yes
OR2x1 2560 2 1.5 Yes
AND3x1 2880 3 2 Yes
NOR3x0 2880 3 2 Yes
NAND4x0 2880 4 2.67 Yes
NAND2x2 3200 2 1.2 No

A program has been developed to acquire all the above-mentioned information from
the LEF file in technology library and output an in-house Standard Cell (SC) file format. This SC
file must be ready before starting BISA design flow. Figure 7 also shows different input files
needed and output files generated when going through the BISA insertion process. Other files
(DEF, UNSP, P&R Script) are described in the following subsections.
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Figure 8: BISA cell insertion and placement.

3.2.1 Unused Space Identification

In the BISA design flow shown in Figure 7, IC designers perform floorplanning, placement,
and clock tree synthesis just as they do in conventional layout design. After finishing clock tree
synthesis, the original circuit has been placed in the layout, so the flow starts to search for and
locate all unused spaces of the layout. We utilize a matrix, which is similar to bitmap in computer
graphics, to record the state of each point in the layout. The initial state ‘0’ represents “empty”. If
one cell occupies this point in the layout, the state is switched to ‘1°. Therefore, every standard
cell placed in the layout will be processed one by one and eventually the bitmap reveals the
location and size of unused spaces. To obtain the location of every placed cell, layout design tools
such as Synopsys IC Compiler can write a DEF file (.def) that contains coordinates of all placed
standard cells. By analyzing coordinate (.def) and its corresponding size (.sc) of every placed cell,
unused spaces in layout can be identified. A Perl script has been developed to read the DEF and



SC file, locate used spaces and output an Unused Spaces file (.unsp). The format of the UNSP file
is shown in Figure 8(b). The required information, such as the size and coordinates of the four
corners, are listed in the UNSP file.

3.2.2 BISA Cell Placement

After unused space identification, the flow completely fills the unused space with BISA cells
selected at the preprocessing step. A dynamic programming algorithm is employed to find an
optimal solution (see Section 3.2.5 for details). The algorithm is implemented in a program
which simulates the cell insertion process and produces a Tcl command script for EDA tools.
Available BISA cells and the layout after applying BISA is shown in Figure 8(c) and (d). Note that
once BISA has been applied, there may still be some spare spaces left between cells, but not
even the smallest cell (green) can be inserted. Therefore, attackers cannot insert any extra cells
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Figure 9: Routing a BISA block.

3.2.3 BISA Cell Routing
After unused space identification, the flow completely fills the unused space with BISA cells
selected at the preprocessing step. A dynamic programming algorithm is employed to find an
optimal solution (see Section 3.2.5 for details). The algorithm is implemented in a program
which simulates the cell insertion process and produces a Tcl command script for EDA tools.
Available BISA cells and the layout after applying BISA is shown in Figure 8(c) and (d). Note that
once BISA has been applied, there may still be some spare spaces left between cells, but not
even the smallest cell (green) can be inserted. Therefore, attackers cannot insert any extra cells
either.
= First, we try to create as many BISA blocks as possible to make each BISA block with
fewer gates so that higher test coverage is easier to achieve. Since the output of every
BISA block will connect to MISR, the number of BISA blocks is determined by the size of
MISR. If M is the size of MISR, all placed BISA cells are divided into M groups (BISA
blocks).
= Second, redundant gates could deteriorate controllability and observability of the circuit
and lower the test coverage significantly, so a tree-structure circuit is proposed to
eliminate redundant gates, as shown in Figure 9. If every input is independent of other
inputs in a tree-structure circuit, every net is controllable and observable, so the
theoretical test coverage of stuck-at fault is 100%. Here, we construct a tree-structure
BISA block according to the sequence of cells in a block set.
Figure 9 shows that two different sequences lead to two different tree-structure circuits.
The first gate becomes the root of the tree-structure circuitry, i.e., it is on the top (first) level of



tree. The outputs of the next x cells (x being the number of inputs of the root cell) are connected
to its inputs as its children cells, on the second level. On the third level, we do the same to
connect new cells to cells on the second level. Cells are sequentially connected to cells on upper
levels until all of them are processed, as shown in Figure 9 (a) and (b). After complete routing in
each block, all inputs of each block should connect to LFSR sequentially to avoid sharing inputs.
In the end, the M bits output from M BISA blocks connect to a MISR with size of M.

1) Testability of Tree-Structure BISA Block: Once a number of BISA cells are assigned to
one BISA block, the input count of the BISA block is fixed and can be calculated, regardless of
how the BISA cells are connected. Suppose there are $n$ BISA cells in one BISA block, and the
k-th BISA cell has J inputs. The BISA block's total number of inputs $S$ can thus be calculated:

n
S=Y li—n+1
k=1

Consider the circuit in Figure 9 as an example. The total number of inputs is S=18(sum of cells’
inputs)-8(cell number)+1=11. Although Figure 9(a) and (b) show two different tree-structures,
their input counts are same. As more cells are added to one block, the number of inputs will
increase consistently. If the number of inputs of one block is greater than what LFSR can provide,
some inputs have to share LFSR outputs in a broadcasting fashion (i.e., using fanout). The
correlation among these shared inputs could potentially result in redundant gates in BISA blocks,
thereby affecting test coverage. Let us take the BISA block in Figure 9 (b) as an example. This
BISA block has 11 input pins, but the size of LFSR is 10, which is 1 bit less than the BISA block.
Thus, one input pin has to share with another input pin in this BISA block. In Figure 9 (a) and (b),
all nets with correlation due to the shared input are highlighted in red. The input correlation can
impact controllability or observability of the dark gates in the figure. One straightforward way of
eliminating redundant gates is to change the tree structure to reconstruct the BISA block by
adjusting the cell order, since the stuck-at fault test coverage is highly related to the circuit
structure, If one slightly changes the sequence, the structure of BISA block will completely
change and thus the test coverage will vary significantly. After trying different sequences in one
BISA block, the sequence that has the highest test coverage is kept.

2) BISA Design Strategy: Two BISA design methods, static and dynamic, are developed in
this work. In the case of static BISA insertion, LFSR and MISR are included in the
original design. After inserting BISA cells, the BISA circuits are connected to the pre-
designed LFSR and MISR. However, static BISA design offers a couple of potential
challenges. First, if the original design does not include LFSR and MISR (i.e. does not
use built-in self-test (BIST)), BISA cannot be established. Additionally, if the BISA
circuit is larger than the testing capabilities of pre-designed LFSR and MISR, sharing
fanout in a BISA block will lower the test coverage and further decrease the reliability of
BISA. In order to address this problem effectively, a dynamic BISA design algorithm is
proposed to insert both BISA cells and LFSR/MISR into unused space and adjust their
composition to ensure LFSR and MISR can fully test the BISA circuitry. The detailed
algorithm will be described in Section 3.2.5. In general, the dynamic BISA design
method is generally very effective for designs with many large unused spaces, like SOC
design. Its shortcoming is that it may not be as effective for very compact designs (those
with little unused space available), which will be discussed in Section 3.4.5.

3) Routability: Additional connections will be introduced by BISA circuits and will take
some routing resources from the routing of the original circuit. In order to ensure routability of
the original circuit and reduce the routing resources taken by the additional BISA circuit, we
usually put the nearest cells in one BISA block to shorten their interconnections. Additionally,
BISA can save more routing resources by sacrificing its own speed. The minimum size for metal
wire and high metal layers could be used for BISA routing so that more room can be created for



routings of the original design. Correspondingly, a slow test clock is used for BISA in
authentication mode. This allows us to ignore BISA's timing constraints and focus on obtaining
maximum coverage with limited routing resources.

At this step, our program can generate a routing script for Synopsys IC Compiler to create
nets and connect them logically, as shown in Figure 7. The whole design, including BISA, will be
physically routed at routing/optimization step. Once the timing and sign-off of the design are
successful, the last step involves the generation of a GDSII/OASIS format of the design for final
tape-out.

3.2.4 Place & Route Algorithms

1) Dynamic Programming Algorithm: During BISA placement, a method is needed to
completely fill each unused space using BISA cells with the fewest total input count. Minimizing
the total input count can not only curtail the routings required in BISA circuitry, but also lower
the requirements for a LFSR and MISR. In this work, we take a dynamic programming approach
for BISA placement. Dynamic programming is one of the classic heuristic algorithms, where a
complex problem is solved by breaking it down into smaller sub-problems [17]. The optimal
solution of the current problem is based on the optimal solution of its sub-problems. When
applicable, this method takes far less time than heuristic search methods that do not take
advantage of the sub-problem overlap (like depth-first search). For the problem of filling each
unused space, all potential solutions can be derived from adding a BISA cell to a corresponding
smaller space that has been solved. Comparing all the possible solutions, we will choose the
filling solution with the fewest inputs. A simple example is illustrated in Figure 10. We are trying
to fill an unused space with the size of L. Assume the optimal solution for any unused space
smaller than L (<L) has already been solved. Suppose that a total number of four BISA cells (B;,
i=1,2,3,4) are available, their sizes are d1, d2, d3, and d4, and their input count are k1, k2, k3,
and k4 respectively, as shown in the brackets in the figure. The optimal solution (5(L)) for filling
the unused space (L) must therefore be from the solutions of a BISA cell B; plus a sub-solution
S(Ui) of the corresponding unused space U; (i=1,2,3,4, U=L-d,). Definitely, unused spaces U1, U2,
U3, and U4 are smaller than L and are L's sub-problems, so the optimal solutions to fill them are
already obtained. From these four potential solutions, the one with the fewest inputs will be
selected. In the example, the solution of the BISA cell $B_4S plus the SU_4S is selected for the
space of size L because its input count (9, S(U,)+d,) is smaller than others' (12, 11, 12). Next, a
larger unused space will be explored until the maximum area of the unused space has been
investigated. Our dynamic programming algorithm can be presented visually as

S(n) = Min[S(n—d,,) + kn,m € BISA cells] 2)
Where n is area of current space and 0<nsL.
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Figure 10: An example using dynamic programming.

The dynamic programming approach seeks to solve each sub-problem only once, thus
reducing the number of computations: once the solution to a given subproblem has been



computed, it is saved for later usage. The method can save significant computation time during
the placement process because there are usually many unused spaces having the same size.
Additionally, a dynamic programming algorithm will examine all possible solutions to the
problem and will pick the best one, so it guarantees finding the optimal solution. Alternatives,
such as the greedy algorithm used in [18], cannot guarantee the optimality of the solution.

2) Dynamic BISA Design Algorithm: The previous static BISA design algorithm [18] is not
suitable for a design without pre-designed LFSR or MISR or a design with many large unused
spaces, as discussed in Section 3.2.4. Thus, a dynamic BISA design method is necessary, in order
to ensure high test coverage. Therefore, all BISA cells, scan flip-flops and XORs for LFSR/MISR
will be inserted into unused spaces during the dynamic BISA design. Since unused spaces in
layout are fixed, the key point is balancing the number of BISA cells for BISA circuit and the
number of scan flip-flops inserted for LFSR and MISR in certain unused spaces. If most of the
unused spaces are filled with BISA cells and the size of LFSR/MISR is small, such an LFSR/MISR
cannot provide or receive long-enough vectors and thus test coverage will not be very high. If
LFSR and MISR are much larger than the corresponding inserted BISA cells, the excessive scan
flip-flops could result in a huge power consumption during BISA testing because of switchings in
a large number of scan flip-flops at every clock cycle. Thus, the size of LFSR/MISR and BISA
circuit should be balanced, in order to achieve 100% test coverage with smallest size of
LFSR/MISR. The dynamic BISA design algorithm, depicted in Algorithm 1, has been developed to
address this problem. From line 1 to line 3, required information produced at previous steps--
like BISA cell size, unused space area, and polynomial primitives of LFSR/MISR [16], etc.--is
imported. The dynamic programming algorithm described in Section 3.2.5 finds solutions for all
unused spaces smaller and equal to the maximum unused space (line 4). On the line 5, unused
spaces are filled with scan flip-flops only as much as possible. Then, the corresponding number
of XORs (in the polynomial primitive file) needs to insert. Remaining spaces are then filled with
BISA cells, as described in line 7. Next, the number of BISA cells and their inputs is obtained (line
8). Once the BISA cell count, input count, and the size of LFSR and MISR are known, one can
determine if current LFSR and MISR are able to fully test BISA circuits. We define a test index to
represent the testability of current BISA circuits, which can be calculated using the Equation (3).

Test Index = (Sum of Cell Inputs)-(Sum of Cells)-(MISR Size)*((LFSR Size)-1) (3)

A positive integer of the test index means that current LFSR and MISR can fully test the BISA
circuits, so the process can move ahead to shorten LFSR/MISR and place more BISA cells. The
following loop tries to clear the unused space that has the most scan flip-flops and refill it with
BISA cells (line 11-15). If the new test index is still greater than a threshold, the action will be
approved (line 16). All the BISA placement information is updated, and then the process moves
forward to try the next unused space with the most flip-flops (line 17-20). If the test index is
smaller than the threshold, this action is unsuccessful. The reason is most likely that the size of
LFSR/MISR decreases too much, because excessive scan flip-flops for LFSR and MISR are
removed. Therefore, a new loop goes back to line 11 and begins to explore the unused space
with the second greatest number of flip-flops. The process will be repeated until all unused
spaces with flip-flops have been investigated. Finally, the test index will be a value greater than
but very closed to the threshold. It means LFSR can offer more inputs than input count of every
BISA block, so there is no redundant gate in the BISA circuitry.



Algorithm 1 The dynamic BISA design procedure.

Read SC and UNSP files

Read polynomial primitive [30] for LFSR and MISR
Read dynamic programming filling results

Insert scan flip-flops to fill all unused spaces

Insert appropriate XOR gates, remove scan flip-flops if
necessary

6: Insert BISA cells to fill remaining unused spaces

7: Count current BISA cell input # and BISA cell #
8
9

Lol

AN

. Calculate Test Index
- while (Test Index > threshold) do

10: Search an uninvestigated unused space with most flip-
flops
11 Clear the unused space (remove scan flip-flops, XORs

and BISA cells in the unused space)
2 Insert BISA cells to fill remaining unused spaces
13: Count current BISA cell input # and BISA cell #

14: Update Test Index

15: if (Test Index > threshold) then

16: Update inserted BISA cells

17: Update scan flip-flops and XORs
18: Update LFSR and MISR

19: Update Test Index

20 end if

21: end while

3.2.5 BISA Design in System-on-Chips (SoCs)

In this section, we extend the BISA framework to System-on-Chips (SOCs). SOC is typically a
bottom-up hierarchical design, and the top module includes other pre-designed sub-modules, or
what are known as intellectual property (IP) cores. We assume that each IP core in the SOC has
been implemented with BISA already by the flow described in Section 3.2. In this case, each IP
core can be simply treated like a standard cell, so BISA design in the top module of a SOC is
nearly the same as that in a single-module design. The main difference is that IP cores are much
larger than standard cells and cannot be placed in a row. In addition, we also have to determine
how to organize the LFSR/MISR. For an SOC design, therefore, we just need to make some small
changes on the step of unused spaces identification, and other steps are exactly same.

Since BISA will be applied to all modules in a hierarchical design, three topological structures
(distributed, centralized, and hybrid) to organize LFSR/MISR are illustrated in Figure 11.
“Distributed structure” means each IP core and top module has its own LFSR/MISR, as shown in
Figure 11(a). Two additional pins are reserved in each sub-module for shifting data in shift mode.
Although distributed structure has simple wire interconnections and requires fewer pins, having
these independent LFSRs/MISRs in every module could result in the larger area overhead. In
“centralized structure”, only one centralized LFSR and one centralized MISR (in the top module
or one of sub-modules) are used to generate test patterns and compress responses for BISA
blocks in both the top module and other IP cores. Centralized structure can potentially increase
the complexity of BISA cells routing, requires more pins than others and could potentially
increase area. Each module will use N+M pins to receive N-bits test vectors and output M-bits



responses. “Hybrid structure” is, as the name suggests, an amalgam of the two above structures.
If some sub-modules have dedicated LFSR/MISR and some do not have due to limited IP core
resources, “Hybrid structure” is more flexible.
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Figure 11: Three possible structures used to organize LFSRs/MISRs in an SoC design.

3.3 Feasibility and Reliability of BISA

3.3.1 ECO

In chip design, Engineering Change Order (ECO) [19] is the process of making some small
changes in the processed design. Before the chip masks are made, ECOs are usually done to save
time by avoiding the need for full ASIC logic synthesis, technology mapping, layout design,
layout extraction, and timing verification. After masks have been developed, ECOs could be
performed to save money. If a change can be implemented by modifying only a few of the layers
of a design, then the cost is much less than it would be if the design was rebuilt from scratch.
Our proposed BISA technique does not impact either pre-mask or post-mask ECOs. All inserted
BISA cells can be used as spare logic gates. When a BISA cell is selected for ECO, the BISA cell
needs to disconnect from its BISA circuits. Then another two wire connection changes are
required to skip the selected BISA cell and reroute the original BISA circuits. Since BISA circuits
do not have timing constraints, these two routing changes can be implemented using limited
space. Moreover, our BISA design algorithm will fill unused spaces with different types of gates
and ensure the variety of BISA cells.

3.3.2 Filler Cell and Decoupling Capacitor Cell

In conventional layout design, after placement and routing, unused spaces will be filled
with filler cells or decoupling capacitor (decap) cells in order to reduce the design rule check
(DRC) violations created by the base layers and to ensure power rail connection. Moreover, filler
cells and decap cells are able to provide power and ground capacitances, which can effectively
minimize power supply noise. However, filler cells and decap cells do not have functionality, so
they cannot be tested and can be easily identified and removed by attacker. Although no space
is left for decap cells after applying BISA, the BISA cells are able to provide decoupling
capacitance to some degree. For decap cell, the decoupling capacitance comes entirely from
dedicated gate oxide capacitance sources, but BISA cell utilizes its diffusion capacitance for the
decoupling capacitance. Typically, diffusion capacitance is less than gate capacitance. However,
N. Weste and D. Harris [20] pointed out that the diffusion capacitance Cy, and Cg4, of contacted
source and drain region was comparable to the gate capacitance. In the BISA design, BISA cells
are connected together to form a combinational circuit, so most source/drain diffusions are
contacted for making connections. Therefore, BISA cells are able to supply decoupling
capacitance to functional cells nearby. To illustrate their power and ground capacitance, we use
the cell characterization function in HSPICE to report the node capacitance of standard cells.
Table 3 lists the power (Cypp) and ground capacitance (Cyss) of functional standard BISA cells and



filler cells in two academic standard cell libraries. Top portion for each library corresponds to the
BISA cells while the bottom portions correspond to the filler and decap cells. The last column in
the table shows the power and ground capacitance per unit area. We observe that standard
cells do not lose much power/ground capacitance, and even some BISA cells have larger
capacitance. For example, in the NANGATE 45nm standard cell library, NAND2_x1 and NOR2_x1
can offer larger average capacitance than its filler cells. Note that the source/drain capacitor is
operation mode dependent [20]. When the system is in functional mode, the BISA circuit will be
idle and all BISA cells are in a pre-specified mode depending on the value in the LFSR. Some cells
are in the mode where they can provide the maximum decaps, while others are may not be.
Since different types of BISA cells are inserted at the BISA placement step, a large number of
inserted BISA cells and their diversity can ensure that average decoupling capacitance is
relatively stable. Analyzing this shall be part of our future research plan.

Table 3: The power and ground capacitance of filler cells and a portion of functional standard
cells in two academic standard cell libraries.

NANGATE 450m standard cell library
Cell Cvpp Cvss Area (Cvpp.Cvss)/Area
INV_xI 38.5a 348.5a 3800 (0.010,0.092)
NAND2_x1 83.6a 536.4a 5700 (0.015,0.094)
NOR2_x1 86.6a 544.9a 5700 (0.015,0.096)
XOR2 x1 156.6a 1.965f 5700 (0.027,0.345)
AND3 x1 76.5a 1.179f 9500 (0.008,0.124)
FILLCELL_x1 25.3a 96.2a 1900 (0.013,0.051)
FILLCELL_x2 38.8a 109.8a 3800 (0.010,0.029)
FILLCELL_x4 64.8a 135.8a 7600 (0.008,0.018)
FILLCELL_x8 123a 254.6a | 15200 (0.008,0.017)
FILLCELL_x16 234.2a | 422.9a | 30400 (0.008.0.014)
FILLCELL_x32 451.1a | 687.8a | 60800 (0.007,0.011)
SAED 90nm standard cell library
Cell Cvpp Cyss Area (C\f[)[).C\v'SS )/Area
INVx0 290.9a | 230.9a 1920 (0.152.0.120)
NAND2x0 516.6a | 264.4a 1920 (0.269.0.138)
XOR2x1 691.8a | 727.9a 4800 (0.144,0.152)
XOR3x1 1.045f 1.188f 7680 (0.136,0.155)
DECAP 317.5a | 206.8a 1920 (0.165.0.108)
DHFILLLHL2 175.6a | 203.6a 640 (0.274,0.318)
DHFILLHLH2 290.9a 373.7a 640 (0.455,0.584)
SHFILLI 56.44a | 50.17a 320 (0.176,0.157)
SHFILL2 201.0a 184.2a 640 (0.314,0.288)
SHFILL64 1.144f 1.159f | 20480 (0.056,0.057)
SHFILL128 2.193f 2.215f | 40960 (0.054,0.054)
3.3.3 Potential Attacks

We pointed out earlier that BISA cells are the same as other circuit cells, so it is extremely
difficult for an adversary to identify them. If this were possible, however, attacks could proceed.
BISA, as an authentication circuitry, should be immune to different attacks that attempt to
create space for Trojan gates via removal, redesign, resizing, or bypassing. Three potential
attacks on these two targets, filler cells or original standard cells, are discussed as follows.

1) Removal attack: Removal attack is the most direct and simplest way to create space for
Trojan gates. Simply removing BISA cells will change the functionality of BISA blocks. Test
patterns will test the functionality of BISA blocks, and BISA signatures can tell if the BISA cells
have been tampered with. If some functional standard cells from the original design are



removed by adversaries, the original functionality will be altered. Both functional and structural
tests are able to detect removal attacks. We recommend using as few unnecessary non-
functional standard cells, such as buffers, as possible. Even if some buffers are deleted and
cannot be detected, the limited space left from removing buffers would still hamper Trojan
insertion.

2) Redesign attack: If the adversary changes one or more gates that alter the functionality,
it will be detected by functional tests regardless in BISA circuit or the original circuit [21]. If the
adversary is forced to redesign the layout in order to achieve the same functionality and insert
Trojan gates as well, then the chip dimensions will probably alter. In addition, these alterations
could result in changes on placements and routings for some or all design components and their
interconnections. Modifications to original circuitry would impact the circuit timing that could
be detected using side-channel based techniques [5] [6]. Therefore, the redesign attack could be
more effective on BISA than original circuit, because BISA is redundant circuit in functional mode
and does not impact circuit performance. However, there are major difficulties making it
practically impossible. First, it is nontrivial for the foundry to differentiate the original circuit
from BISA in order to create the space for hardware Trojan insertion. BISA cells are the same
standard cells as in the original design. BISA cells form combinational circuits and are connected
to scan flip-flops of LFSR/MISR, which look like a standard BIST design. The foundry would need
to analyze the entire layout to identify the BISA cells. While, this is not necessarily impossible, it
does require a significant amount of effort and expertise on the part of the attacker to insert a
Trojan compared to conventional approaches that do not use BISA. Second, should an adversary
actually identify BISA cells, they must then analyze the BISA circuitry and find a functionally
equivalent logic with a smaller area. Finding a feasible solution for a tree-structured circuit is
another challenge. For example, two 2-input NAND gate converging in another 2-input NAND
gate can be replaced by a 2-input OR gate and two 2-input AND gate. The area of the NAND gate
implementation is 16.59 (um?) using the SAED90nm standard cell library, but the OR gate plus
AND gates need a space of 22.12 (um?). Thus, it cannot be used to create unused spaces for
inserting hardware Trojans. The most possible way is that some certain gates can be function-
equivalently replaced by an available complex standard cell in standard cell library, such as
A022x1, AOI221x1 and etc. Since these complex cells are well designed and compacted as much
as possible, such as sharing diffusion areas and sharing connection wires. Usually, the complex
cell has a smaller area than its functionally equivalent circuit comprised of basic cells (like NAND,
NOR, AND, and OR). For instance, the area of an A022x1 cell (11.98 pm?) is smaller than the
area of a 2-input AND cell plus a 2-input OR cell (14.74 pm?). Therefore, these logics that
complex cells have should be avoided in a tree-structured BISA block. If found, a new logic can
be formed by slightly changing cell’s order in the BISA block. Moreover, this attack can also be
made more challenging if the BISA cells that are connected are not directly neighboring. Even if
there is an equivalent circuit, the area might be larger than any unused space created by
removing any one of these distributed BISA cells. Taking the layout in Figure 3 for example, we
suppose that a yellow cell can replace two blue cells without change in functionality and its size
is smaller than total size of two blue cells. Since a yellow cell is larger than one blue cell, the new
yellow cell cannot be inserted into any places where two original blue cells locate without
touching original circuit. In addition, some techniques can be used to prevent the logic
minimization at the BISA design stage. Synthesis tools have the ability to minimize logic and can
be used to verify if a BISA block is the implementation with the minimum area. If not, one can
reorder the sequence of gates to form a new tree structure BISA block until it cannot be
optimized. This step does not change the placement of BISA cells, but it needs a longer
processing time and modifies routing in the BISA block. Third, if the attacker cannot simply



replace the BISA cells with a functionally equivalent cell with smaller area, the only alternative is
to begin modifying the original design as well. As mentioned in the work, BISA does not address
the issue of redesigning the original circuit. However, modifications in the original circuit could
impact the performance of the original design and change its side-channel (delay, power, etc.)
behavior. While an attacker could overcome the obstacles above with enough effort, Trojan
insertion is still significantly hampered with BISA compared to other approaches.

3) Resizing attack: In BISA, all BISA cells are already of minimum size and cannot shrink any
further. If adversaries continue to reduce the cell size, it will violate design rules and result in a
very low yield. Some standard cells in the original design could be resized to smaller standard
cells; however, the performance will be affected by using smaller cells.

4) Attack LFSR/MISR: LFSR and MISR are used to generate patterns and signatures
respectively, so they are also possible targets for the adversaries. Fortunately, both TPG and
ORA are quite secure against different kinds of attacks. Any modification to the register or XOR
gate in TPG or ORA will result in a totally different patterns and signatures. No matter what
change is made, a different signature will indicate that the chip has been tampered with.
Admittedly, attackers may acquire generated test patterns and the corresponding signature by
attacking TPG or ORA. They might store these results, bypass BISA, and output them pretending
BISA is working normally. However, even if they could obtain all this information, the bypassing
attack will be detected. Different seeds in LFSR will result in different signatures. The seed and
its corresponding signature are similar to a “challenge-response pair”. Since the seed used for
authentication is not fixed and an arbitrary seed can be shifted in through scan chain, it is nearly
impossible for attackers to speculate the final signatures without knowing the seeds that test
engineers will use. The trustworthiness of BISA can be guaranteed by applying various seeds.

3.3.4 Yield

The discussions above rely on the fact that BISA is genuine and working without
manufacturing defects. However, BISA contains LFSR, MISR and many BISA cells which may also
be affected by silicon defects during fabrication. One chip producing a faulty signature may
contain hardware Trojans, but it also could have been caused by defects in BISA, while the
original circuits are working well. Of course, we do not want to discard good chips with defects
only in their BISAs, reducing yield and increasing costs. Fortunately, it should be possible to
reliably tell the difference. Hardware Trojans are intentionally inserted into all or a portion of
chips by adversaries, while defects occur randomly due to imperfect manufacturing processes.
Therefore, the probability of two chips with the same defects would be very low, but chips with
the same Trojan would always produce the same faulty signatures--this provides us with
opportunities to separate chips with random defect from Trojans. Note that masks used for
fabrication cost millions of dollars, so it is infeasible for adversaries to make one mask for each
chip in order to imitate random defects. Chips with the same correct signatures and the same
faulty signatures will therefore be suspected as infected chips. If the faulty signatures from one
chip are completely different from other chips, the faulty signatures probably result from
defects in BISA.

3.4 Results and Analysis
3.4.1 BISA Implementation

In this section, we implement BISA on 15 designs from various benchmark suites. Four of
them (OpenSparc, Leon3mp, Netcard and VGA_lcd) are SOCs containing hierarchical sub-
modules and the others are single-module designs. All benchmarks are synthesized using
Synopsys Design Compiler with Synopsys 90nm technology library. Overall, 32 standard cells



were selected as BISA cells from the 320 in the library and each cell has a unique function.
Synopsys IC Compiler has been employed for layout design. For our implementations of BISA, a
series of programs have been developed to extract standard library information, to identify
unused spaces, and to generate placing & routing scripts for the IC Compiler. Figure 12 shows
the layouts of benchmark DES3_area with the core utilization of 70%. Before applying BISA, we
can see many unused spaces in Figure 12(a). In Figure 12(b), all these unused spaces are filled
with BISA cells, highlighted in red, after BISA insertion. Although there still are some spare
spaces left, these remaining spaces are too small to place a cell. Another benefit of these left
spare spaces is that they can be routing channel for low-layer metals, especially for critical paths.

i)

(a)Before BISA Insertion (b) After BISA Insertion
Figure 12: Implementation of a signal module design.

Figure 13 shows the implementation of one Sparc core in OpenSparc T1 benchmark. The
Opensparc T1 is the first 64-bit open-source microprocessor, released in 2006 by ORACLE. The
Opensparc core is composed of seven sub-modules (hard macros): exu, ffu, ifu, Isu, mul, spu,
and tlu. The layout floorplan and proportion of every sub-module are depicted in Figure 13(a)
and (b), respectively. We try to compact the floorplan as much as possible in the layout, but
gaps still inevitably exist between sub-modules. With the implementation of BISA, BISA circuit
can perfectly fill all these gaps. Since the OpenSparc benchmark has more than half million gates,
it is very difficult to see those inserted BISA cells. To show the BISA circuitry between sub-
modules, three screenshots at different locations in the layout are shown in Figure 13(c)-(e). The
black parts are cores (sub-modules) and the red components represent the inserted BISA cells.

Similarly, BISA has been applied to all benchmarks, and their implementation results are
presented in Table 4. Compared to single-module designs, SOC designs need many more BISA
cells. Therefore, in these SOC designs, a large dynamic LFSR and a MISR are generated in these
unused spaces to ensure a very high test coverage without any area overhead. It is worth
nothing that the size of the BISA circuit is not proportional to the original circuit and it is related
to the circuit structure and its timing constraints. For example, the AES_core benchmark is half
the size of the DES_perf benchmark, but its BISA circuit is more than twice as large as that in the
DES_perf using the same core utilization.



Figure 13: Implementation of the OpenSparc microprocessor core.

Table 4: BISA implementation.

Benchmark OpenCore Faraday Technology Corp.
DES3_area USB_funct AES_core Ethernet DES_perf | VGA_lcd DMA DSP RISC
Cell # 1,559 6,445 26,447 29,153 49,517 124,031 6,873 17,895 | 30,229
BISA cell # 133 440 5,961 1,170 2,092 5,280 1,544 | 5212 3,756
Benchmark UL SOC
b8 Leon3mp Netcard OpenSparc Core
Cell # 24,300 545,836 317,033 781,321
BISA cell # 2,050 25,405 19,364 30,903
3.4.2 Filling Approach

A filling approach using the dynamic programming algorithm has been developed in Section
3.2.5. Theoretically, this algorithm can produce an optimal filling solution with the fewest
number of inputs. Four randomly picked unused spaces have been investigated. The greedy
algorithm (one classic heuristic algorithm) used in [18] has also been employed to fill these four
spaces with the same set of BISA cells. Table 5 is the comparison results between the two
algorithms under the same condition. Rows 5 and 6 show the total input count of inserted BISA
cells and the leftover space after BISA insertion, respectively. In all four cases, the dynamic
programming algorithm (DP) outperforms the greedy algorithm in the total input count and
therefore should obtain lower LFSR overheads and higher test coverage more easily. In all but
one case (case 3), the dynamic programming algorithm leaves the same amount of spare space
as the greedy algorithm. In case 3, it leaves significantly less space. Therefore, the dynamic
programming algorithm is at least as good as the greedy algorithm in filling unused spaces, if not
better.

Table 5: Algorithm performance.

Space 1 Space 2 Space 3 Space 4
Area 15000 20000 30000 48000
Algo. DP Greedy DP | Greedy DP | Greedy | DP | Greedy
Cell # 2 2 - 3 5 4 7 7
Input # 7 9 9 10 12 15 19 20
Left Area | 1880 1880 160 160 240 1520 0 0

3.4.3 Test Coverage Analysis

As described in Section 3.2.4, two factors can influence the eventual test coverage of a BISA
circuit: the testability of the BISA circuit and test patterns. The testability of the BISA circuit is
determined by the number of redundant gates at the BISA design phase. As LFSR and MISR
become larger, their testing capabilities enhance and the number of redundant gates goes down.
Figure 14 shows testability of the BISA circuit in benchmark USB_funct by performing fault
simulation in Synopsys TetraMax. Different sizes of LFSRs, such as 32-bit, 16-bit and 8-bit are
investigated. As we expected, the test coverage goes up gradually as LFSR and MISR become
larger. The testable coverage is a theoretical test coverage that can be achieved, but the actual
test coverage also is dependent on test patterns, i.e. the number of random patterns generated
from LFSR.
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Figure 15: Test coverage over a different number of test patterns.

The test coverage over a different number of test patterns are illustrated in Figure 15. As
more random test patterns have been applied, the test coverage increases and then gradually
goes to saturation in all 12 benchmarks. The top left figure shows the results of three SOC
designs. Although these SOC designs have more BISA cells and larger BISA circuits, compared to
other single-module benchmarks, their test coverage can be 100% after applying 30,000 random
patterns. For other single-module designs with smaller BISA circuits, their test coverage is lower
than the SOCs', which defies our intuition. This is because, for the BISA circuits in SOCs, XOR gate
is much more than other types of gates, such as AND, OR, NOR, and NAND. A XOR gate can
produce half of ones and half of zeroes with neutral input values. In other words, XOR is more
controllable and observable than other types of gates. Therefore, these BISA circuits with much
more XORs can have a higher test coverage. Three examples (DMA, DSP and RISC) are shown in



in the bottom right figure. Their test coverage is around 98% after applying 50,000 test patterns-
-lower than other benchmarks. If we further apply a number of random patterns, their test
coverage still keeps increasing, but very slowly. We find that the remaining faults can be tested
by some specific patterns with a large portion of deterministic bits that have a very small
probability of occurring in random patterns. However, in order to get the full test coverage in a
short time, certain seeds for LFSR can be shifted in so that these specific patterns can be
generated as well.

3.4.4 Dynamic BISA vs. Static BISA

For the static BISA design, the original design must contain LSFR and MISR. The LFSR and
MISR have been designed before layout design, so it is difficult to accurately predict the size of
the BISA circuit at that time. If the pre-designed LFSR and MISR are not large enough to
effectively test the entire BISA circuit when it is implemented in layout, the test coverage will
not be very high, especially for a low-utilization design or SOC design. The dynamic BISA design
approach described in Section 3.2.5 makes up the shortcoming of the static BISA design, which is
more suitable for designs with large unused spaces. All designs have been revaluated to
demonstrate if the dynamic BISA design can enhance the testability of BISA circuitry. Figure 16
shows the results of a portion of benchmarks using the static and dynamic BISA design
approaches. In comparison, the dynamic BISA design algorithm can avoid redundant gate in BISA
circuit, so their test coverage is always 100%. The test coverage in fault simulation for the static
BISA design is around 95%, and the AES_core is even less than 80\%. We can make an obvious
conclusion that the dynamic BISA insertion can enhance the testability of large BISA circuits
significantly.
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Figure 16: Test coverage using static and dynamic BISA designs.

3.4.5 Compaction Ratio

Although the dynamic BISA design can realize a higher test coverage than the static design,
the dynamic method requires more large unused spaces to place sufficient scan flip-flops.
Therefore, the dynamic BISA design is not suitable for very compact designs. In a layout, the
number and size of unused spaces are dependent on the layout compaction ratio (core
utilization). If the core utilization is very high, standard cells are placed tightly in each row. This
will result in fewer and smaller unused spaces. There will not be enough scan flip-flops to
construct large entough LFSR and MISR, so the LFSR and MISR cannot fully test the BISA circuits.
Table 6 shows the results using various core utilizations in the two largest OpenCore
benchmarks.



Table 6: Compaction Ratio.

Benchmark AES DES_perf
Utilization 65% 68% 70% 67% 70% 75%
Unused Space # | 22343 | 21518 19971 23653 19557 11963
BISA # 12156 10936 10417 7380 5011 2028
LFSR & 149 139 109 107 131 15
MISR 149 140 109 107 132 15
Success Yes Yes No Yes Yes No

According to the results, the dynamic BISA design works very well for SOC designs and
single-module designs with a lower compaction ratio. In most cases, designers want to compact
designs as much as possible. Pre-designed LFSR and MISR are a better choice for these high-
compact designs. Since the number of BISA cells in a high-compact design is very small, the pre-
designed LFSR and MISR should be large enough to test them. On the other hand, in a large
design, the core utilization cannot be very high due to conservative floorplanning. For example,
93% is the highest core utilization we can implement for the benchmark AES. If the layout design
is not as compact as designers' predictions in the netlist design, then there will be too many
unused spaces, requiring that an excessive number of BISA cells be inserted. The inserted BISA
cells will be beyond the test capabilities of pre-designed LFSR and MISR. To solve this problem,
the dynamic BISA technigue can be used to insert flip-flops, increase the size of LFSR/MISR a
little bit and, meanwhile, reduce the number of BISA cells. Thus, test coverage and area
overhead could be improved greatly.

3.4.6 Timing Overhead

Although the BISA circuits have no interconnections to the original circuits, there may still
be a concern that the BISA cells will negatively impact timing of the original design. The
additional metal interconnections introduced by BISA circuits will result in less routing space and
more cross-talk. These effects could potentially make critical paths violate timing constraints
that were verified without the BISA circuits. We have conducted experiments to explore how
much extra delay will be introduced by the BISA circuits. Benchmark b18 has been implemented
with and without BISA. 200 critical paths have been extracted from designs with BISA and
without BISA by Synopsys Primetime, and the HSPICE has been employed to simulate their
propagation delays. To obtain information on path delay changes with and without BISA
insertion, the same paths are used for comparison. Since the BISA circuit size is dependent on
the core utilization of a design, different core utilizations for one design are investigated as well.
Table 7 shows results from the benchmark b18. The third column presents the average
increased delay after BISA insertion across 200 critical paths. The fourth and fifth columns
indicates the average percentage of the increase and largest increase respectively. As these
results show, more unused spaces require more BISA cells as the core utilization goes down,
thus increasing the impact on path delay. We can see that the impact is much less than the
wafer-to-wafer process variation, because the largest impact is less than 2%. Therefore, the
impact on timing is not a critical issue for the proposed BISA technique.

Table 7: Timing analysis on 200 critical paths in designs with and without BISA circuits.



Benchmark: b18

Utilization | BISA cell # | Avg. Inc. Delay | Avg. Per. | Max Per.
78% 299 23.8 ps 0.21% 0.36%
75% 2000 I11ps 0.96% 2.17%
12% 3512 191ps 1.66% 2.38%

4 Efficient and Secure Split Manufacturing via Obfuscated Built-In

Self-Authentication

Recently, Split manufacturing, or split fabrication (used interchangeably in this section), has
been proposed as an approach to enable use of state-of-the-art semiconductor foundries while
minimizing the risks to IP [22]. Split manufacturing divides a design into Front End of Line (FEOL)
and Back End of Line (BEOL) portions for fabrication by different foundries. An untrusted
foundry performs (higher cost) FEOL manufacturing, then ships wafers to a trusted foundry for
(lower cost) BEOL fabrication.

Two types of split manufacturing have been proposed in prior work: 2D integration and 3D
integration based split fabrication. [23] first proposed the use of 3D integration of two tiers (the
computation plane and the control plane) manufactured in separate foundries to ensure the
performance of the computation plane and the security of the control plane. One tier is stacked
on the top of another tier and conventional 3D stacked integration techniques are required to
merge two tiers with vertical interconnections called through-silicon-vias (TSVs). Unfortunately,
the semiconductor industry has not adopted 3D ICs as quickly as many in the industry expected.
Given the barriers to 3D, 2D and 2.5D based split manufacturing are discussed more, such as
those in [24] [25] [26] [27]. [22] developed a technique that makes FEOL and BEOL fabricated
separately in different foundries and can make connections between them with wafer-bonding
at a fine enough pitch similar to TSVs. [25] [26] demonstrated the feasibility of split fabrication
after metal 1 (M1) on test chips and evaluated the chip performance. Although the split after
M1 attempts to hide all inter-cell interconnections and can obfuscate the design effectively, it
leads to high manufacturing costs. [26 [27] employed another integration approach. The back-
end layers can be manufactured directly on top of the front-end layers with mask alignment
techniques in a trusted foundry, which was studied on an FPGA chip fabricated in a split
manufacturing process [27]. Finally, [28] presents a k-security metric to select wires to be lifted
to a trusted tier (BEOL) to ensure the security when split at a higher layer. However, lifting a
large number of wires in the original design will introduce large timing (273%) and power (254%)
overhead and significantly impact chip performance [28], since delay and power are strong
functions of wire length. In addition, though k similar elements can be created by lifting
sufficient wires, it cannot prevent adversaries from tampering all these similar elements with
untargeted Trojans.

In this section, we propose a new design methodology that can effectively prevent reverse
engineering of the chip functionality and further prevent hardware Trojan insertion with split
fabrication process. Our technique allows FEOL and BEOL to be separated at higher layers (= M4)
to reduce cost. In order to enhance effectiveness of obfuscation, all unused spaces in layout will
be filled with additional functional cells or circuitry called obfuscated built-in self-authentication
(OBISA) instead of non-functional filler cells during layout design. If any of the OBISA cells are
replaced by a Trojan cell during FEOL, OBISA will be able to detect the modification. We propose
to make connections between OBISA added into unused spaces and the original circuit,
especially in its critical parts that are to be protected. The OBISA circuit not only makes it



extremely difficult for adversary to identify the original design, but also thwarts hardware Trojan
insertion by filling unused spaces in layout. In addition, several design-for-security methods are
proposed to minimize timing and power overhead introduced by OBISA circuit while maintaining
a high test coverage for OBISA.

4.1 Low-Layer Split vs. High-Layer Split

4.1.1 CostIssues

Reverse engineering requires analysis of local standard-cell types and their interconnections
in order to identify structures or some targeted logics within a circuit. Split fabrication can
prevent reverse-engineering the complete design or macro in a layout design by hiding a portion
of wires. However, an adversary still could identify some sub-circuits, such as adder, decoder,
cryptographic logic, etc., based on FEOL mask-layer information. The strength of obfuscation
depends on the split layer, i.e., the layer that ends at the FEOL, since it determines how much
layout information will be exposed to untrusted foundries. Figure 17 (a) shows a cross-section of
a 14nm Intel chip [29] [30]. A high-layer split leaks more interconnections while low-layer split
leaks much less. Split after M1 provides exceptional circuit obfuscation, because adversaries at
untrusted foundry only see unconnected gates in layout and no inter-cell connections at all [24]
[25]. However, such a low-layer split also brings challenges in split manufacturing process.
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Figure 17: A cross-section of an IC.

First, high metal layers are thicker and have a larger pitch than low metal layers, as shown in
Figure 17 (a) and (b). Table 8 shows the pitches of different metal layers for a 45nm technology
[30]. The integration process of FEOL and BEOL wafers requires precise alignment using either
electrical, mechanical, or optical alignment techniques. A via requires a certain amount of space
surrounding in order to satisfy design rules. If alignment is not perfect, the misalignment defects
could influence circuit performance or even produce malfunction. However, the tolerance for
misalignment improves greatly if the split occurs at higher layers. Unfortunately, misalignment
has a higher probability to occur in split fabrication due to different process technologies or
facilities at two different foundries (FEOL and BEOL), the yield for low-layer split could be
relatively low.

Table 8: Pitch length of different metal layers in 45nm CMOS technology [30].
Layer Poly | M1 | M2 | M3 | M4 | M5 | M6 | M7 | M8 M9
Pitch(nm) 125 130 | 140 | 140 | 280 | 280 | 280 | 800 | 800 [ 1600




Second, higher layer split leads to fewer and less dense connections between the trusted
and untrusted tiers, and can mitigate the challenges of alignment for a large number of
connections. Therefore, high-layer splits would reduce complexity of integrating FEOL and BEOL
and result in a high integration yield.

Third, lower layer splits also requires a closer technology match between foundries. One
major reason for choosing split fabrication is that trusted foundry (BEOL) has less advanced
technology and cannot meet the specification for a particular design. A split at a higher level can
allow BEOL fabricated with older process technologies, making split manufacturing more widely
acceptable and further reducing its costs.

4.1.2 Security Issues: Obfuscation and Tampering

Split at a higher layer has many pros as described above, but it also results in significant
interconnections for circuit blocks information leakage. Although adversaries cannot reverse
engineer the entire design due to lack of connections in BEOL, it still provides adversaries
opportunities to identify some sub-circuits (such as adder, decoder, and FSM) and tamper them
with hardware Trojans. [24] and [26] proposed to insert additional “"dummy'’ cells as spare cells
for obfuscating the composition of a circuit, but the inserted cells have no interconnections
between themselves or between them and the main design. Hence, they are easy to identify.

4.2 Split Manufacturing with OBISA

4.2.1 Proposed Approach

Based on the previous techniques, there is a tradeoff between cost and security for split
manufacturing. However, our objective is to develop a methodology that allows high-layer splits,
M3 or higher, while lowering the cost and at the same time providing a high level of security.
We propose to insert functional standard cells into unused spaces of layout instead of filler cells
or dummy cells. The inserted cells are connected together to form a circuitry, called obfuscated
built-in self-authentication (OBISA). Note that this is different from the previously proposed
built-in self-authentication (BISA) [18] for preventing Trojan insertion both from design and
objective standpoints. As shown in Figure 18 and 19, OBISA is connected to the original circuit it
is trying to protect, which makes it extremely difficult for adversaries at untrusted foundry to
separate the OBISA design from the original design. However, OBISA circuit would result in
dynamic power and timing overhead when the original circuit is operating. Therefore, a gating
mechanism and a net selection method are proposed to minimize the negative impact on the
original design. Additionally, we attempt to maintain a high test coverage for OBISA circuit with
tree-structure circuits as in Section 3. Its built-in self-test (BIST) like structure can detect
potential malicious modifications by test patterns that target stuck-at faults. However, the tree-
structure circuit and test structure components could become a target for the adversary to
identify them. In this work, an approach is presented that can create fan-outs to further
obfuscate tree-structure circuit in OBISA without impacting its original high test coverage.
Moreover, lifting critical wires to the trusted tier (BEOL) can prevent identifying the test
structure within OBISA.
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Figure 18: (a) BISA structure and (b) the proposed OBISA structure for split manufacturing in this
work.

4.2.2 OBISA Structure

Figure 18(b) shows the structure of the proposed OBISA. It consists of a test pattern
generator (TPG), an output response analyzer (ORA) and OBISA blocks under test. The entire
OBISA circuit is implemented in unused spaces of the layout. In this work, we use a linear
feedback shift register (LFSR) as TPG and multiple input shift register (MISR) as ORA. They are
used to generate random test patterns and compress responses to generate a final signature,
respectively [16].

Two operating modes are associated with the proposed technique. In functional mode, the
original circuit is operating normally, but clocks for BISA circuits are disabled and LFSR and MISR
are reset to their pre-defined state. A gating mechanism presented in Section 4.3.3 will block
signals from activating original circuits to OBISA circuit. Therefore, OBISA circuit stays quiet and
does not consume any dynamic power. In addition, these idle OBISA cells can fulfill the role of
decap cells. Note that OBISA circuitry will, however, consume leakage power. The other mode,
authentication mode, is used to authenticate a fabricated chip in the field. In this mode, LFSR
generates a random test pattern at every clock cycle and the test pattern is shared by all OBISA
blocks. At the same time, MISR collects responses from OBISA blocks and eventually produces a
signature, as shown in Figure 18(b). The test phase ends when a sufficient number of test
patterns have been applied.

Since inputs to OBISA come from LFSR and original circuits, thus test patterns for OBISA are
generated depending on the LFSR and the state of the original circuit. We can keep the state of
original circuit and run a large number of clock cycles on LFSR to test the inserted circuit as one
iteration. In the next iteration, we change state of the original circuit and perform the tests once
again. Test coverage will increase as more iterations are performed. Functional simulation at the
OBISA design phase could help us find an efficient combination of the circuit state and the seed
in the LFSR.

Note that clock is provided externally either in normal mode or in authentication mode.
Typically, authentication test clock is much slower than functional clock [16]. The authentication
clock frequency is dependent on the number of gates in an OBISA block and the gate types. The
timing constraint can be obtained using post-layout timing analysis tool to find the longest path
after OBISA inserted circuit. In the authentication mode, a very slow test clock can be used to
ensure no path fails in OBISA circuits.
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Figure 19: Layout after OBISA insertion.

4.2.3  Security Analysis

Split manufacturing obfuscates the design by preventing an untrusted foundry from gaining
a full view of the layout. Our proposed OBISA structure can improve obfuscation through the
following features:

Functional filler cells are inserted into unused spaces during layout design, as shown in
Figure 19. Original cells and additional OBISA cells are all standard cells from the same
technology library.

Additional cells are connected together to construct combinational circuits. There is no
difference in routing between original circuits and inserted OBISA circuits. While tree-
structure circuit (no fan-out) is required for a BISA block in order to ensure a high test
coverage, fan-out is allowed in this new OBISA technique. An approach for fan-out
creation in OBISA blocks is proposed in Section 4.3.3.

Interconnections between OBISA circuits and original circuits (obfuscation connections)
are allowed. The additional logics can further obfuscate the original design, especially
for the security-critical parts. For example, Figure 20(a) shows a design. Split fabrication
can hide some wires in FEOL, but some sub-circuits (cell 3, 4, 5 and 6) could be identified.
In Figure 20(c), the proposed technique can add OBISA cells to protect this sub-circuit
from reverse-engineering.

The inserted OBISA includes LFSR and MISR. We understand that LFSR and MISR have a
unique structure and are controlled by mode select port, so they could be a target by an
adversary to identify the additional OBISA circuit. Split manufacturing can hide critical
wires in LFSR and MISR and effectively obfuscate LFSR and MISR.

Additional local/global connections and various gates introduced by OBISA circuits can
hinder neighbor connectedness analysis and standard-cell composition bias analysis [26].
OBISA blocks have not only local connections to connect cells nearby, but also long
connections to other OBISA blocks, LFSR and MISR. A measure of spatial connectedness
will be influenced by OBISA circuits. Similarly, additional cells with different types can
change the types and proportions of cells of design presented in a small region in layout.
OBISA cells can obfuscate the cell composition analysis.

The proximity attack is based on the heuristic that floorplanning and placement (F&P)
tools place the partitions close by and orient the partitions so as to reduce the wiring
(delay) between the pins to be connected. [30] shows that the proximity attack could be
a threat of connecting the missing nets correctly. However, OBISA circuit is able to
produce additional tier-to-tier connections which can mitigate the threats of proximity
attacks.



(c) Design with inserted OBISA circuit (gray) in FEOL
Figure 20: Circuit graphs: OBISA circuit is used to obfuscate the original design.

4.3 Implementation Strategy

4.3.1 Implementation Flow

Figure 21 presents our proposed OBISA implementation flow. The flow fits within the
conventional ASIC design flow and is computable with current commercial physical design tools.
OBISA insertion procedure begins after clock tree synthesis. At that point, the whole original
circuit has been placed and no more cells will be added in conventional flow (the most left
column in Figure 21). The unused spaces would be identified in DEF file and various standard
cells are inserted depending on size of each unused space. More information regarding OBISA
cell insertion will be described in Section 4.3.2. Once all unused spaces are filled with OBISA cells,
we will begin to connect all OBISA cells in a region to construct a number of tree-structure
combinational circuits (referred to as OBISA blocks). These steps as shown in the middle column
were developed in Section 3. The steps in the third column are proposed to strengthen
obfuscation, including fanout creation in tree-structure OBISA blocks, adding obfuscation
connections, and lifting secure-critical paths within OBISA. Detailed connection strategies for
each of them will be presented in Section 4.3.3. After the OBISA process, the flow resumes the
procedure in conventional design flow. The physical design tool will perform routing for the
entire design including original circuit and OBISA circuit. All constraints for the original design
can be taken care of by the physical design tool during routing process. Once the timing and
sign-off of the design are successful, the last step involves the generation of a GDSII format of
the design for final tape-out.
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Figure 21: The OBISA implementation flow.

4.3.2 OBISA Cell Insertion Strategy
Several filling algorithms are proposed to fill every unused space as much as possible and no
more cells could be added without changing the layout. Cells with different types and sizes are
inserted to ensure a variety of OBISA cells due to the following reasons:
= A greater variety of OBISA cells can effectively thwart the cell composition analysis [26].
This is analogous to “"dummy" cells in prior work.
= Qur OBISA also supports either pre-mask or post-mask Engineering Change Order (ECO).
Unused spaces are filled with a variety of standard cells and all these cells can be
treated as spare logic gates. Moreover. When an OBISA cell is selected for ECO, a few
modifications are needed to bypass this cell in OBISA block. Since OBISA circuits do not
have a certain timing constraint, routing for OBISA could be very flexible.

4.3.3 OBISA Cell Connection Strategy

The OBISA structure allows adding fan-out and obfuscation connections. There are two
points we focus on: testability of the OBISA circuit and effect on obfuscation strength. Our
connection strategies are presented as follows:

1) Preprocessing: Two pieces of information are required to collect for each net in OBISA
blocks: idle state (IS) and related inputs (RI) in LFSR. As we described earlier, OBISA circuits are
working in authentication mode only, so LFSR will be set to a specific state if the chip is in the
other mode. We propose to set the state of LFSR to a vector that has alternative "1' and "0' to
avoid biasing values in OBISA circuit. If an input is connected to the original design because of
the obfuscation connection, its IS is undetermined (*X'). Therefore, the IS for each net can be "1',
'0', or 'X', based on input values and their interconnections. IS can determine if a cell could be a
gated cell. Another required information is the Rl for each net. Taking the OBISA circuit in Figure
22(a) for example, the RI for the net N7 are A2 (N2) and A3 (N3), because nets N2 and N3
determine the value on net N7, while the related inputs for net N5 are Al, A2, and A3.
Information regarding Rl can help us decide how to create fan-out without losing any test
coverage. In this work, we use a symbol, [x, {A,B,C}], to represent IS (x) and RI (A,B,C) of a net.
One can see the IS and Rl for the nets in OBISA circuits are labeled in Figure 22.
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Figure 22: Additional connections for improving obfuscation.

2) Fan-out Creation: Adding fan-out could potentially produce redundant gates and
thereby lower controllability of gates. Fan-outs can be created by following the rules:

= The fan-out is created between a net in one block i and an input pin of another block j (i

#j).

= The netin one block i and the root output in block j have no common Rls.

If these two conditions are satisfied, the net and the input pin can be a candidate pair for a
fan-out. During the fan-out creation, the original connection on the input pin in block j from
LFSR should be removed, so the pin is available for the new fan-out connection. These two tree-
structure OBISA blocks i and j share a sub-tree circuit so that they are still tree-structure blocks
in nature. Therefore, the added fan-out will not result in any extra redundant gates in OBISA
blocks. Each net is still controllable, so a high test coverage of OBISA circuit will be achieved.
Figure 22(a) shows an example of the fan-out creation. The net N14 in OBISA block i has
completely different Rl from the root output N10 in OBISA block j, so N14 can have a fan-out to
connect any input in OBISA block S$jS$. In Figure 22(a), the pin for the net N7 is selected. Note
that a fan-out cannot be made on the net N13, because the net N13 and N10 have shared Rls,
Aland A2.

3) Gated Cells: For logic gates, the dominant value on one input can result in a
deterministic output regardless of logic values on other inputs, so those gates are gated by their
dominant values. For example, ‘1’ and ‘0’ are used to gate OR and AND cells, respectively. We
will take advantage of this for preventing dynamic power consumption within OBISA circuitry.
An obfuscation connection must connect to a gated cell in OBISA circuit. For a gated cell that
acts as an interface, at least one input's IS should be its dominant value during the normal
operation. Other inputs of the gated cell can connect any net in the original circuit. In order to
minimize modifications caused by the obfuscation connections, we prefer to choose a leaf cell
for gated cell, because its input connections from LFSR can be removed without changing



existing OBISA blocks. In Figure 22(b), cells BC1 and BC2 are both gated in idle state. BC1 is
selected since it is a leaf cell in the tree-structure OBISA block. All gated cells will be identified at
this step, and they could be selected for obfuscation connections, as described in the next
subsection.
4) Obfuscation Connection: Obfuscation connection also introduces additional
interconnections between OBISA circuits and original circuits. Figure 22(b) shows an example of
an obfuscation connection. It will cause inevitable increased capacitance on connected nets.
Although we do not worry about the timing in OBISA circuits because of the slower frequency
used during the authentication for OBISA, the added capacitance could potentially fail paths in
the original design. Thus, we must select connection nets very carefully to avoid timing
violations. Here, we propose an approach to select nets in the original circuit for obfuscation
connection based on delay estimation by the static timing analysis (STA) tool.
= We define a parameter Cy, which is a threshold for dividing paths into critical paths and
non-critical paths, as shown in Figure 23.

= Given the Cy, the STA is able to find all critical paths in original design. All nets on critical
paths will be excluded from obfuscation connection. All remaining nets will be assigned
a virtual path delay Co. We call it virtual path delay, because it is not a real delay. Many
non-critical paths have much smaller delay than Cy, but we treat them as the same
length to simplify the problem.

= Another parameter C; is defined as a threshold to select net for obfuscation connection.

The C; should be smaller than functional clock period C,. The difference of C; and C,is a
safe margin that ensures no timing violation is produced due to our rough estimation.

= |f an obfuscation connection is made on a net, its virtual path delay will add an

increased delay D. The increased value D will vary depending on the technology libraries.
It can be estimated by averaging some samples in simulations. A large enough safe
margin (C,- C;) can tolerate such a rough calculation.

= A net can be considered for an obfuscation connection if its virtual path delay plus D is

still smaller than the threshold value C;. For example, in Figure 23, path P0’s added D is
still smaller than C;. In the example of Figure 22(b), the net N4 is selected for the
obfuscation connection at this step.

= |f there is an available gated cell nearby (BC1 in Figure 22(b)), an obfuscation connection

can be made from the net (N4) in original design to one input (N14) of the gated cell.

= The increased capacitance not only influences one net, but also affects all nets on paths

that pass this net. Therefore, the virtual delay of these relevant nets will be updated by
adding D. For the circuit in Figure 22(b), the net N1, N2, N3, N5, and N10 need to be
updated. For the net in Figure 23, there are two obfuscation connections that push its
virtual delay from PO to P2.

[ ]

Non-critical Paths

Figure 23: Net selection for obfuscation connection.
The value of increased delay D depends on the length of added wire. Experiment results in
Section 2.1.1 shows that adding a short connection can bring about 30ps increased delay with
90nm technology. Since the obfuscation connection is made between nets not far away from



each other, the increased delay D will not be very large. We can obtain a conservative $D$ value
in simulations.

5) Hide LFSR/MISR with Lifted Wires: Since there is one primary input that selects either
function mode or test mode, an adversary could trace from this port to identify LFSR/MISR and
further find OBISA cells. In order to avoid this threat, the mode select net, the feedback nets in
LFSR/MISR, and some nets connecting flip-flops in LFSR/MISR should be lifted to trust tier, so
attackers cannot have any opportunity to identify them.

4.4 Experimental Results

4.4.1 OBISA Implementation

The OBISA technique was evaluated using Opencore benchmark circuits. Each circuit was
synthesized with 90nm CMOS technology using Synopsys Design Compiler. Physical design,
including floorplanning, placement, and routing, were conducted using Synopsys IC Compiler.
Scripts were developed to analyze unused spaces in layout, insert OBISA cells, and connect them
using our proposed methodologies, including fan-outs and obfuscation connections.

Table 9 shows the implementation results of five Opencore benchmark circuits with various
scales. The number of OBISA cells for each circuit is listed in the third row of the table. Those
OBISA cells do not introduce any area overhead because they are placed in the unused spaces in
layout. Fan-outs and obfuscation connections are created between OBISA blocks to obfuscate
their tree structures and increase the difficulty for adversaries to identify them in layout. An
average 5% of nets go through trusted tier that is above M3 layer, as shown in the seventh row
of the table. However, a small number of obfuscation connections are sufficient to make the
inserted OBISA circuits look like a part of original design, to enhance obfuscation in FEOL. Since
the test vector from LFSR has alternative "1' and "0', almost all leaf cells could be a gated cell. In
our implementations, we use percentage to quantify how many inputs are altered for
obfuscation connection in an OBISA circuit. Table 9 shows results with around 5% obfuscation
connections (OCs). Thus, for an OBISA block with 80 inputs, there are 4 inputs connected to
original circuit as obfuscation connections. Since all the OCs are made on short paths in the
original circuit, no timing violations are introduced by OCs.

Table 9: Implementation results on different benchmark circuits.

| Benchmark | DES3 | USB | AES | Ethernet | DES_perf |
Total Cell # 1,559 6,445 26,447 29,153 49,517
OBISA Cell # 158 439 2,950 1,169 2,090
OBISA Cell Pct (%) | 10.1% | 5.8% 11.1% 4% 4%
Total Net # 1,799 | 7,709 | 28,505 29,981 49,951
Secure Net # (>M4) 137 306 2,138 705 1,353
Secure Net Pct (%) 7.6% 4% 9.5% 2.4% 2.7%
Fan-out # 30 52 134 84 106
5% OC # 15 40 256 106 189

4.4.2 Authentication Test Coverage Analysis

The authentication test coverage is a metric to assess the security level of the circuit. A
higher stuck-at test coverage for OBISA circuits indicates that more OBISA cells could be verified
by structural test patterns. The target coverage is 100%. According to our proposed flow in
Section 4.3.1, all inserted OBISA cells will be connected in a tree-structure manner first. Then
fan-outs and obfuscation connections are added based on the existed OBISA blocks. We take the
OBISA circuitry in the Ethernet benchmark circuit as a running example to compare the test



coverage across different test patterns in five scenarios: only tree-structure OBISA blocks, OBISA
blocks with fan-out, BISA blocks with fan-out and three different proportions (5%, 15%, and 25%)
of obfuscation connections. For each scenario, four kinds of test patterns, 50,000, 100,000,
10,000 random patterns with different iterations, and ATPG (automatic test pattern generation)
patterns, are applied to the OBISA circuits separately, and the results are shown in Figure 24.
From the two left columns, we can see tree-structure OBISA circuit with and without fan-outs
have the same test coverage using either random patterns or ATPG patterns. It demonstrates
that the proposed fan-out creation method will not affect test coverage. The ATPG patterns can
achieve almost 100% test coverage. For the random patterns from LFSR, the test coverage goes
up as more patterns are applied. Their test coverage for 50,000 and 100,000 random patterns
are 99.81% and 99.97%, respectively. The remaining three columns illustrate that test coverage
will be impacted by obfuscation connections. This is because signals on obfuscation connections
are tied to a constant value in one iteration and thus result in the controllability loss of gated
cells. The last column shows an extreme scenario that 25% of inputs in OBISA blocks are
connected to original design. The test coverage within 1-iteration is not high enough for the
authentication test. However, as we described in Section 4.2.2, if we change the status of
original circuits with multiple iterations, i.e. the values on obfuscation connections could change,
the controllability of gated cells can be compensated to some degree depending on how many
iterations can perform. Results in Figure 24 show that multiple iteration offers much better test
coverage than the 1-iteration with the same number of test patterns, while using 10-iteration
test leads to a higher test coverage than that with 5-iteration tests. The test coverage can
improve further if more random patterns are applied or more iterations are performed.
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Figure 24: Authentication test coverage for an OBISA circuit.

5. Conclusions and Research Plans

In this report, we present a clock sweeping technique, a novel BISA technique, an OBISA
technique to address IC trust issues by untrusted foundry. Clock sweeping is used to obtain the
critical and non-critical path delay and then generate signatures for ICs for the purpose of
detecting hardware Trojans. Statistical analysis methods have proved to be effective at
identifying Trojan-inserted ICs in the presence of process variations, as demonstrated by both
our simulation and FPGA implementation results. BISA will fill all unused spaces to prevent or
hamper Trojan insertion process after completing layout design by leaving no space for Trojan



gates. BISA cells are connected to form a certain functionality. BISA has no impact on original
design, since BISA and original circuits work independently. Additionally, different kinds of
attacks can be detected, in order to ensure BISA's result is trustworthy. By comparing signatures,
designers would know whether the chip has been tampered or not, as demonstrated by the
implementation of different attacks. OBISA can effectively prevent reverse engineering of the
chip functionality and further prevent hardware Trojan insertion with split fabrication process.
Our technique allows FEOL and BEOL to be separated at higher layers (= M3) to reduce cost. We
propose to make connections between OBISA added into unused spaces and the original circuit,
especially in its critical parts that are to be protected. The OBISA circuit not only makes it
extremely difficult for adversary to identify the original design, but also thwarts hardware Trojan
insertion by filling unused spaces in layout. In addition, several optimization approaches are
proposed to minimize timing and power overhead introduced by OBISA circuit while maintaining
a high test coverage for OBISA.

The future directions of our work will be:
1. Evaluate and analyze the security of the OBISA technique against reverse engineering.
2. Apply OBISA to 3D IC whose dies are fabricated by trusted and untrusted foundries.
3. Develop programmable BISA cells and insertion methodology to improve testability of
BISA circuitry
4. Develop a novel and effective OBISA technique without split manufacturing
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